forked from NVIDIA/Megatron-LM
-
Notifications
You must be signed in to change notification settings - Fork 349
/
Copy pathoptimizer_param_scheduler.py
277 lines (225 loc) · 10.8 KB
/
optimizer_param_scheduler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
"""Learning rate decay and weight decay incr functions."""
import math
from megatron import print_rank_0, get_args
class OptimizerParamScheduler(object):
"""Anneals learning rate and weight decay"""
def __init__(self, optimizer, max_lr, min_lr,
lr_warmup_steps, lr_decay_steps, lr_decay_style,
start_wd, end_wd, wd_incr_steps, wd_incr_style,
use_checkpoint_opt_param_scheduler=True,
override_opt_param_scheduler=False):
args = get_args()
# Class values.
self.optimizer = optimizer
self.max_lr = float(max_lr)
self.min_lr = min_lr
assert self.min_lr >= 0.0
assert self.max_lr >= self.min_lr
self.lr_warmup_steps = lr_warmup_steps
self.num_steps = 0
self.lr_decay_steps = lr_decay_steps
assert self.lr_decay_steps > 0
assert self.lr_warmup_steps < self.lr_decay_steps
self.lr_decay_tokens = args.lr_decay_tokens
self.num_tokens = 0
self.lr_warmup_tokens = args.lr_warmup_tokens
self.lr_decay_style = lr_decay_style
self.start_wd = start_wd
self.end_wd = end_wd
assert self.start_wd >= 0.0
assert self.end_wd >= self.start_wd
self.wd_incr_steps = wd_incr_steps
self.wd_incr_style = wd_incr_style
self.override_opt_param_scheduler = override_opt_param_scheduler
self.use_checkpoint_opt_param_scheduler = use_checkpoint_opt_param_scheduler
if self.override_opt_param_scheduler:
assert not self.use_checkpoint_opt_param_scheduler, 'both override and '\
'use-checkpoint are set.'
# Set the learning rate
self.step(0)
print_rank_0('> learning rate decay style: {}'.format(self.lr_decay_style))
def get_wd(self):
""" Weight decay incr functions"""
if self.num_steps > self.wd_incr_steps:
return self.end_wd
if self.wd_incr_style == 'constant':
assert self.start_wd == self.end_wd
return self.end_wd
incr_ratio = float(self.num_steps) / float(self.wd_incr_steps)
assert incr_ratio >= 0.0
assert incr_ratio <= 1.0
delta_wd = self.end_wd - self.start_wd
if self.wd_incr_style == 'linear':
coeff = incr_ratio
elif self.wd_incr_style == 'cosine':
coeff = 0.5 * (math.cos(math.pi * (1 - incr_ratio)) + 1.0)
else:
raise Exception('{} weight decay increment style is not supported.'.format(
self.wd_incr_style))
return self.start_wd + coeff * delta_wd
def get_lr(self):
"""Learning rate decay functions from:
https://openreview.net/pdf?id=BJYwwY9ll pg. 4"""
# Use linear warmup for the initial part.
if self.lr_warmup_tokens is None:
if self.lr_warmup_steps > 0 and self.num_steps <= self.lr_warmup_steps:
if self.num_steps == self.lr_warmup_steps and \
self.lr_decay_tokens is not None:
# The case of step/sample-wise warmup + token-wise decay
self.lr_warmup_tokens = self.num_tokens
return self.max_lr * float(self.num_steps) / \
float(self.lr_warmup_steps)
else:
if self.lr_warmup_tokens > 0 and self.num_tokens <= self.lr_warmup_tokens:
return self.max_lr * float(self.num_tokens) / \
float(self.lr_warmup_tokens)
# If the learning rate is constant, just return the initial value.
if self.lr_decay_style == 'constant':
return self.max_lr
# For any steps larger than `self.lr_decay_steps`, use `self.min_lr`.
if self.lr_decay_tokens is None:
if self.num_steps > self.lr_decay_steps:
return self.min_lr
else:
if self.num_tokens > self.lr_decay_tokens:
return self.min_lr
# If we are done with the warmup period, use the decay style.
if self.lr_decay_style == 'inverse-square-root':
if self.lr_warmup_tokens is None:
warmup_steps = max(self.lr_warmup_steps, 1)
num_steps = max(self.num_steps, 1)
lr = self.max_lr * warmup_steps ** 0.5 / (num_steps ** 0.5)
else:
warmup_tokens = max(self.lr_warmup_tokens, 1)
num_tokens = max(self.num_tokens, 1)
lr = self.max_lr * warmup_tokens ** 0.5 / (num_tokens ** 0.5)
return max(self.min_lr, lr)
if self.lr_decay_tokens is None:
num_steps_ = self.num_steps - self.lr_warmup_steps
decay_steps_ = self.lr_decay_steps - self.lr_warmup_steps
decay_ratio = float(num_steps_) / float(decay_steps_)
else:
num_tokens_ = self.num_tokens - self.lr_warmup_tokens
decay_tokens_ = self.lr_decay_tokens - self.lr_warmup_tokens
decay_ratio = float(num_tokens_) / float(decay_tokens_)
assert decay_ratio >= 0.0
assert decay_ratio <= 1.0
delta_lr = self.max_lr - self.min_lr
if self.lr_decay_style == 'linear':
coeff = (1.0 - decay_ratio)
elif self.lr_decay_style == 'cosine':
coeff = 0.5 * (math.cos(math.pi * decay_ratio) + 1.0)
else:
raise Exception('{} decay style is not supported.'.format(
self.lr_decay_style))
return self.min_lr + coeff * delta_lr
def step(self, increment, token_num=None):
"""Set lr for all parameters groups."""
if token_num is None:
args = get_args()
token_num = args.consumed_train_tokens
self.num_tokens = token_num
self.num_steps += increment
new_lr = self.get_lr()
new_wd = self.get_wd()
for group in self.optimizer.param_groups:
group['lr'] = new_lr * group.get('lr_mult', 1.0)
group['weight_decay'] = new_wd * group.get('wd_mult', 1.0)
def state_dict(self):
state_dict = {
'max_lr': self.max_lr,
'lr_warmup_steps': self.lr_warmup_steps,
'lr_warmup_tokens': self.lr_warmup_tokens,
'num_steps': self.num_steps,
'num_tokens': self.num_tokens,
'lr_decay_style': self.lr_decay_style,
'lr_decay_steps': self.lr_decay_steps,
'lr_decay_tokens': self.lr_decay_tokens,
'min_lr': self.min_lr,
'start_wd': self.start_wd,
'end_wd': self.end_wd,
'wd_incr_style': self.wd_incr_style,
'wd_incr_steps': self.wd_incr_steps
}
return state_dict
def _check_and_set(self, cls_value, sd_value, name):
"""Auxiliary function for checking the values in the checkpoint and
setting them."""
if self.override_opt_param_scheduler:
print_rank_0(' > overriding {} value to {}'.format(name, cls_value))
return cls_value
if not self.use_checkpoint_opt_param_scheduler:
assert cls_value == sd_value, \
f'OptimizerParamScheduler: class input value {cls_value} and checkpoint' \
f'value {sd_value} for {name} do not match'
print_rank_0(' > using checkpoint value {} for {}'.format(sd_value,
name))
return sd_value
def load_state_dict(self, sd):
if 'start_lr' in sd:
max_lr_ = sd['start_lr']
else:
max_lr_ = sd['max_lr']
self.max_lr = self._check_and_set(self.max_lr, max_lr_,
'learning rate')
self.min_lr = self._check_and_set(self.min_lr, sd['min_lr'],
'minimum learning rate')
if 'warmup_iter' in sd:
lr_warmup_steps_ = sd['warmup_iter']
elif 'warmup_steps' in sd:
lr_warmup_steps_ = sd['warmup_steps']
else:
lr_warmup_steps_ = sd['lr_warmup_steps']
self.lr_warmup_steps = self._check_and_set(self.lr_warmup_steps,
lr_warmup_steps_,
'warmup iterations')
if 'warmup_tokens' in sd:
lr_warmup_tokens_ = sd['warmup_tokens']
else:
lr_warmup_tokens_ = sd['lr_warmup_tokens']
self.lr_warmup_tokens = self._check_and_set(self.lr_warmup_tokens,
lr_warmup_tokens_,
'warmup tokens')
if 'end_iter' in sd:
lr_decay_steps_ = sd['end_iter']
elif 'decay_steps' in sd:
lr_decay_steps_ = sd['decay_steps']
else:
lr_decay_steps_ = sd['lr_decay_steps']
self.lr_decay_steps = self._check_and_set(self.lr_decay_steps, lr_decay_steps_,
'total number of iterations')
if 'decay_tokens' in sd:
lr_decay_tokens_ = sd['decay_tokens']
else:
lr_decay_tokens_ = sd['lr_decay_tokens']
self.lr_decay_tokens = self._check_and_set(self.lr_decay_tokens,
lr_decay_tokens_,
'decay tokens')
if 'decay_style' in sd:
lr_decay_style_ = sd['decay_style']
else:
lr_decay_style_ = sd['lr_decay_style']
self.lr_decay_style = self._check_and_set(self.lr_decay_style,
lr_decay_style_,
'learning rate decay style')
if 'num_iters' in sd:
num_steps = sd['num_iters']
else:
num_steps = sd['num_steps']
if 'num_tokens' in sd:
self.num_tokens = sd['num_tokens']
self.step(increment=num_steps, token_num=self.num_tokens)
if 'start_wd' in sd:
self.start_wd = self._check_and_set(self.start_wd,
sd['start_wd'],
"start weight decay")
self.end_wd = self._check_and_set(self.end_wd,
sd['end_wd'],
"end weight decay")
self.wd_incr_steps = self._check_and_set(self.wd_incr_steps,
sd['wd_incr_steps'],
"total number of weight decay iterations")
self.wd_incr_style = self._check_and_set(self.wd_incr_style,
sd['wd_incr_style'],
"weight decay incr style")