forked from NVIDIA/Megatron-LM
-
Notifications
You must be signed in to change notification settings - Fork 349
/
Copy pathutils.py
408 lines (335 loc) · 15.6 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company.
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
"""General utilities."""
import sys
import os
import torch
from torch.nn.parallel import DistributedDataParallel as torchDDP
from deepspeed.accelerator import get_accelerator
if get_accelerator().device_name() == 'cuda':
from apex.multi_tensor_apply import multi_tensor_applier
import amp_C
from megatron import (
get_args,
get_adlr_autoresume,
get_num_microbatches
)
from megatron.core import mpu
from megatron.core.tensor_parallel import param_is_not_tensor_parallel_duplicate
from megatron.model.module import param_is_not_shared
from megatron.model.rotary_pos_embedding import RotaryEmbedding
def update_rotary_pos_emb(seq_length):
args = get_args()
rotary_dim = args.hidden_size // args.num_attention_heads \
if args.kv_channels is None else args.kv_channels
if args.rotary_percent < 1.0:
rotary_dim = int(rotary_dim * args.rotary_percent)
# partial rotary embeddings, which is better than full rotary
# Wang and Komatsuzaki et al
# https://github.com/kingoflolz/mesh-transformer-jax/
rotary_pos_emb = RotaryEmbedding(rotary_dim, theta=args.rope_theta)(seq_length).to(
get_accelerator().current_device_name())
args.rotary_pos_emb = rotary_pos_emb
def unwrap_model(model, module_instances=(torchDDP)):
return_list = True
if not isinstance(model, list):
model = [model]
return_list = False
unwrapped_model = []
for model_module in model:
while isinstance(model_module, module_instances):
model_module = model_module.module
unwrapped_model.append(model_module)
if not return_list:
return unwrapped_model[0]
return unwrapped_model
def calc_params_l2_norm(model):
"""Calculate l2 norm of parameters """
args = get_args()
if not isinstance(model, list):
model = [model]
# Remove duplicate params.
params_data = []
for model_ in model:
for param in model_.parameters():
is_not_shared = param_is_not_shared(param)
is_not_tp_duplicate = param_is_not_tensor_parallel_duplicate(param)
if is_not_shared and is_not_tp_duplicate:
if args.bf16:
params_data.append(param.data.float())
else:
params_data.append(param.data)
# Calculate norm
dummy_overflow_buf = get_accelerator().IntTensor([0])
if get_accelerator().device_name() == 'cuda':
norm, _ = multi_tensor_applier(
amp_C.multi_tensor_l2norm,
dummy_overflow_buf,
[params_data],
False # no per-parameter norm
)
else :
norm = torch.norm(params_data,p=2.0)
norm_2 = norm * norm
# Sum across all model-parallel GPUs.
torch.distributed.all_reduce(norm_2,
op=torch.distributed.ReduceOp.SUM,
group=mpu.get_model_parallel_group())
return norm_2.item() ** 0.5
def average_losses_across_data_parallel_group(losses):
"""Reduce a tensor of losses across all GPUs."""
averaged_losses = torch.cat(
[loss.clone().detach().view(1) for loss in losses])
torch.distributed.all_reduce(averaged_losses,
group=mpu.get_data_parallel_group())
averaged_losses = averaged_losses / \
torch.distributed.get_world_size(group=mpu.get_data_parallel_group())
return averaged_losses
def report_memory(name):
"""Simple GPU memory report."""
mega_bytes = 1024.0 * 1024.0
string = name + ' memory (MB)'
string += ' | allocated: {}'.format(
get_accelerator().memory_allocated() / mega_bytes)
string += ' | max allocated: {}'.format(
get_accelerator().max_memory_allocated() / mega_bytes)
string += ' | reserved: {}'.format(
get_accelerator().memory_reserved() / mega_bytes)
string += ' | max reserved: {}'.format(
get_accelerator().max_memory_reserved() / mega_bytes)
if mpu.get_data_parallel_rank() == 0:
print("[Rank {}] {}".format(torch.distributed.get_rank(), string),
flush=True)
def print_params_min_max_norm(optimizer, iteration):
"""Print min, max, and norm of all parameters."""
index = 0
rank = torch.distributed.get_rank()
string = 'iteration, rank, index, tensor-model-parallel, min, max, norm\n'
optimizer_ = optimizer.optimizer
for param_group in optimizer_.param_groups:
for param in param_group['params']:
index += 1
min_ = param.data.min()
max_ = param.data.max()
norm = torch.linalg.norm(param.data)
string += '{:7d}, {:4d}, {:4d}, {:2d}, '.format(
iteration, rank, index, int(param.tensor_model_parallel))
string += '{:.6E}, {:.6E}, {:.6E}\n'.format(min_, max_, norm)
print(string, flush=True)
def check_adlr_autoresume_termination(iteration, model,
optimizer, opt_param_scheduler):
"""Check for autoresume signal and exit if it is received."""
from megatron.checkpointing import save_checkpoint
args = get_args()
autoresume = get_adlr_autoresume()
# Add barrier to ensure consistnecy.
torch.distributed.barrier()
if autoresume.termination_requested():
if args.save:
save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
print_rank_0(">>> autoresume termination request found!")
if torch.distributed.get_rank() == 0:
autoresume.request_resume()
print_rank_0(">>> training terminated. Returning")
sys.exit(0)
def get_ltor_masks_and_position_ids(data,
eod_token,
reset_position_ids,
reset_attention_mask,
eod_mask_loss,
skip_mask=False):
"""Build masks and position id for left to right model."""
# Extract batch size and sequence length.
micro_batch_size, seq_length = data.size()
# Attention mask (lower triangular).
if reset_attention_mask:
att_mask_batch = micro_batch_size
else:
att_mask_batch = 1
attention_mask = None
if not skip_mask:
attention_mask = torch.tril(torch.ones(
(att_mask_batch, seq_length, seq_length), device=data.device)).view(att_mask_batch, 1, seq_length, seq_length)
# Loss mask.
loss_mask = torch.ones(data.size(), dtype=torch.float, device=data.device)
if eod_mask_loss:
loss_mask[data == eod_token] = 0.0
# Position ids.
position_ids = torch.arange(seq_length, dtype=torch.long,
device=data.device)
position_ids = position_ids.unsqueeze(0).expand_as(data)
# We need to clone as the ids will be modifed based on batch index.
if reset_position_ids:
position_ids = position_ids.clone()
if reset_position_ids or reset_attention_mask:
# Loop through the batches:
for b in range(micro_batch_size):
# Find indecies where EOD token is.
eod_index = position_ids[b, data[b] == eod_token]
# Detach indecies from positions if going to modify positions.
if reset_position_ids:
eod_index = eod_index.clone()
# Loop through EOD indecies:
prev_index = 0
for j in range(eod_index.size()[0]):
i = eod_index[j]
# Mask attention loss.
if reset_attention_mask and not skip_mask:
attention_mask[b, 0, (i + 1):, :(i + 1)] = 0
# Reset positions.
if reset_position_ids:
position_ids[b, (i + 1):] -= (i + 1 - prev_index)
prev_index = i + 1
# Convert attention mask to binary:
if not skip_mask:
attention_mask = (attention_mask < 0.5)
return attention_mask, loss_mask, position_ids
def print_rank_0(message):
"""If distributed is initialized, print only on rank 0."""
if torch.distributed.is_initialized():
if torch.distributed.get_rank() == 0:
print(message, flush=True)
else:
print(message, flush=True)
def is_last_rank():
return torch.distributed.get_rank() == (
torch.distributed.get_world_size() - 1)
def print_rank_last(message):
"""If distributed is initialized, print only on last rank."""
if torch.distributed.is_initialized():
if is_last_rank():
print(message, flush=True)
else:
print(message, flush=True)
def is_aml():
# Are we running inside an Azure Machine Learning (AML) environment?
return 'AZUREML_EXPERIMENT_ID' in os.environ
def is_rank_0():
"""Check whether it is rank 0. For AML, check if it is rank 0 of a node"""
if torch.distributed.is_initialized():
if torch.distributed.get_rank() == 0 or (
is_aml() and torch.distributed.get_rank() % get_accelerator().device_count() == 0
):
return True
else:
return False
else:
return True
def get_parameters_in_billions(model):
gpus_per_model = torch.distributed.get_world_size(group=mpu.get_model_parallel_group())
approx_parameters_in_billions = sum([sum([p.ds_numel if hasattr(p,'ds_id') else p.nelement() for p in model_module.parameters()])
for model_module in model])
return approx_parameters_in_billions*gpus_per_model/(1e9)
def throughput_calculator(model, args, iteration_time, total_iterations):
batch_size = args.micro_batch_size * get_num_microbatches() * args.data_parallel_size
approx_parameters_in_billions = None if (model is None) else get_parameters_in_billions(model)
elapsed_time_per_iter = iteration_time/total_iterations
samples_per_second = batch_size / elapsed_time_per_iter
#flops calculator
hidden_size = args.hidden_size
num_attention_heads = args.num_attention_heads
head_dim = hidden_size // num_attention_heads
ffn_hidden_size = args.ffn_hidden_size
num_layers = args.num_layers
vocab_size = args.padded_vocab_size
gqa = args.num_attention_heads // args.num_key_value_heads
num_experts_routed_to = args.topk
ffn_multiplier = 3 if args.swiglu else 2
macs_per_flops = 2
# General TFLOPs formula (borrowed from Equation 3 in Section 5.1 of
# https://arxiv.org/pdf/2104.04473.pdf).
# correction has been made to TFLOPs formula due to incorrect behavior
# observed with selective recompute when GQA not used and for all with GQA
seq_len = args.seq_length
if hasattr(args, 'actual_seq_length'):
seq_len = args.actual_seq_length
pre_and_post_mha_gemm_macs = batch_size * num_layers * (1 + (2 // gqa) + 1) * (hidden_size**2) * seq_len
mha_bgemm_macs = batch_size * num_layers * 2 * head_dim * num_attention_heads * (seq_len**2)
ffn_gemm_macs = batch_size * num_layers * ffn_multiplier * ffn_hidden_size * hidden_size * seq_len * num_experts_routed_to
logit_lmhead_gemm_macs = batch_size * vocab_size * hidden_size * seq_len
fwd_macs = pre_and_post_mha_gemm_macs + mha_bgemm_macs + ffn_gemm_macs + logit_lmhead_gemm_macs
bwd_macs = 2 * fwd_macs
fwd_bwd_macs = fwd_macs + bwd_macs
if (hasattr(args, 'checkpoint_activations') and args.checkpoint_activations) or (hasattr(args, 'recompute_granularity') and args.recompute_granularity == 'full'):
fwd_bwd_macs += fwd_macs
if hasattr(args, 'recompute_granularity') and args.recompute_granularity == 'selective':
fwd_bwd_macs += mha_bgemm_macs
flops_per_iteration = fwd_bwd_macs * macs_per_flops
tflops = flops_per_iteration / (elapsed_time_per_iter * args.world_size * (10**12))
return samples_per_second, tflops, approx_parameters_in_billions
def checkpoint_throughput_calculator(model, latency_second):
approx_parameters_in_billions = get_parameters_in_billions(model)
checkpoint_multiplier = 14 # fp16 weights (2), fp32 weights (4), fp32 momentum (4), fp32 variance (4)
checkpoint_GB = approx_parameters_in_billions * checkpoint_multiplier
GB_per_second = checkpoint_GB / latency_second
print_rank_0(f"Checkpoint Save GB: {round(checkpoint_GB, 3)}, GB/Sec: {round(GB_per_second,2)}, Latency(second): {round(latency_second, 3)}")
def get_fingerprint_header():
return f"{'min':^13} {'max':^13} {'mean':^13} {'l2 norm':^12} metadata"
def get_fingerprint(p):
return f"{p.min():13.6e} {p.max():13.6e} {p.mean():13.6e} {p.norm():12.6e}"
def dump_position_embed_weights(preamble, iteration, model):
# return
from deepspeed.utils import safe_get_full_fp32_param
tp_rank = mpu.get_tensor_model_parallel_rank()
pp_rank = mpu.get_pipeline_model_parallel_rank()
dp_rank = mpu.get_data_parallel_rank()
get_fingerprint_header()
for n, p in model[0].named_parameters():
if 'position_embeddings' in n:
tag = "pos_embed"
elif "word_embeddings" in n:
tag = "word_embed"
else:
continue
print(f"iter {iteration} {preamble} {tag} lp {tp_rank}/{pp_rank}/{dp_rank}: {get_fingerprint(p)} {p.shape}\n")
fp32_value = safe_get_full_fp32_param(p)
if fp32_value is not None:
print(f"iter {iteration} {preamble} {tag} hp {tp_rank}/{pp_rank}/{dp_rank}: {get_fingerprint(fp32_value)} {p.shape}\n")
def dump_weights(preamble, iteration, model, optimizer, tensor=None):
# return
tp_rank = mpu.get_tensor_model_parallel_rank()
pp_rank = mpu.get_pipeline_model_parallel_rank()
dp_rank = mpu.get_data_parallel_rank()
dp_size = mpu.get_data_parallel_world_size()
fn = f"debug-bf16-{iteration}-pp{pp_rank}-tp{tp_rank}-dp{dp_rank}-{preamble}.txt"
# only care for first and last pp stages and dp0 tp0
#if not (mpu.is_pipeline_first_stage() or mpu.is_pipeline_last_stage()):
# return
#if not (tp_rank == 0 and dp_rank == 0):
# return
if tensor is not None:
orig_tensor = tensor
if hasattr(tensor, "_hp_param"):
numel = tensor._hp_param.numel() # // dp_size
tensor = tensor.flatten().narrow(0, 0, numel)
#print(fn)
with open(fn, "w") as fh:
fh.write(f"{get_fingerprint_header()}\n")
if tensor is not None:
fh.write(f"{get_fingerprint(tensor)} tensor {tensor.shape}\n")
else:
for n, p in model[0].named_parameters():
fh.write(f"{get_fingerprint(p)} {n} {p.shape}\n")
return
# until we figure out how to dump the actual fp32 values don't do this
fn = f"debug-fp32-{iteration}-pp{pp_rank}-tp{tp_rank}-dp{dp_rank}-{preamble}.txt"
with open(fn, "w") as fh:
fh.write(f"{get_fingerprint_header()}\n")
if tensor is not None:
tensor = orig_tensor
if hasattr(tensor, "_hp_param"):
fh.write(f"{get_fingerprint(tensor._hp_param)} tensor {tensor._hp_param.shape}\n")
#fh.write(f"{get_fingerprint(tensor._hp_grad)} tensor grad\n")
else:
fh.write(f"{get_fingerprint(tensor)} tensor {tensor.shape}\n")
#fh.write(f"{get_fingerprint(tensor.grad)} tensor grad\n")
else:
if hasattr(model[0].module.tied_modules, "embed"):
p = model[0].module.tied_modules.embed.word_embeddings.weight._hp_param
fh.write(f"{get_fingerprint(p)} module.tied_modules.embed.word_embeddings.weight._hp_param {p.shape}\n")
def found_kill_switch():
args = get_args()
if args.kill_switch_file is not None and os.path.exists(args.kill_switch_file):
return True
else:
return False