-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathVignetteNetworkExt.html
891 lines (816 loc) · 35.6 KB
/
VignetteNetworkExt.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />
<meta name="author" content="Isidora Avila and Derek Corcoran" />
<meta name="date" content="2020-11-09" />
<title>How to use the NetworExtinction Package</title>
<script src="site_libs/jquery-1.11.3/jquery.min.js"></script>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link href="site_libs/bootstrap-3.3.5/css/cosmo.min.css" rel="stylesheet" />
<script src="site_libs/bootstrap-3.3.5/js/bootstrap.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/html5shiv.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/respond.min.js"></script>
<script src="site_libs/navigation-1.1/tabsets.js"></script>
<link href="site_libs/highlightjs-9.12.0/textmate.css" rel="stylesheet" />
<script src="site_libs/highlightjs-9.12.0/highlight.js"></script>
<link href="site_libs/anchor-sections-1.0/anchor-sections.css" rel="stylesheet" />
<script src="site_libs/anchor-sections-1.0/anchor-sections.js"></script>
<link href="site_libs/font-awesome-5.1.0/css/all.css" rel="stylesheet" />
<link href="site_libs/font-awesome-5.1.0/css/v4-shims.css" rel="stylesheet" />
<style type="text/css">
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
</style>
<style type="text/css">code{white-space: pre;}</style>
<style type="text/css">
pre:not([class]) {
background-color: white;
}
</style>
<script type="text/javascript">
if (window.hljs) {
hljs.configure({languages: []});
hljs.initHighlightingOnLoad();
if (document.readyState && document.readyState === "complete") {
window.setTimeout(function() { hljs.initHighlighting(); }, 0);
}
}
</script>
<style type="text/css">
h1 {
font-size: 34px;
}
h1.title {
font-size: 38px;
}
h2 {
font-size: 30px;
}
h3 {
font-size: 24px;
}
h4 {
font-size: 18px;
}
h5 {
font-size: 16px;
}
h6 {
font-size: 12px;
}
.table th:not([align]) {
text-align: left;
}
</style>
<style type = "text/css">
.main-container {
max-width: 940px;
margin-left: auto;
margin-right: auto;
}
code {
color: inherit;
background-color: rgba(0, 0, 0, 0.04);
}
img {
max-width:100%;
}
.tabbed-pane {
padding-top: 12px;
}
.html-widget {
margin-bottom: 20px;
}
button.code-folding-btn:focus {
outline: none;
}
summary {
display: list-item;
}
</style>
<style type="text/css">
/* padding for bootstrap navbar */
body {
padding-top: 51px;
padding-bottom: 40px;
}
/* offset scroll position for anchor links (for fixed navbar) */
.section h1 {
padding-top: 56px;
margin-top: -56px;
}
.section h2 {
padding-top: 56px;
margin-top: -56px;
}
.section h3 {
padding-top: 56px;
margin-top: -56px;
}
.section h4 {
padding-top: 56px;
margin-top: -56px;
}
.section h5 {
padding-top: 56px;
margin-top: -56px;
}
.section h6 {
padding-top: 56px;
margin-top: -56px;
}
.dropdown-submenu {
position: relative;
}
.dropdown-submenu>.dropdown-menu {
top: 0;
left: 100%;
margin-top: -6px;
margin-left: -1px;
border-radius: 0 6px 6px 6px;
}
.dropdown-submenu:hover>.dropdown-menu {
display: block;
}
.dropdown-submenu>a:after {
display: block;
content: " ";
float: right;
width: 0;
height: 0;
border-color: transparent;
border-style: solid;
border-width: 5px 0 5px 5px;
border-left-color: #cccccc;
margin-top: 5px;
margin-right: -10px;
}
.dropdown-submenu:hover>a:after {
border-left-color: #ffffff;
}
.dropdown-submenu.pull-left {
float: none;
}
.dropdown-submenu.pull-left>.dropdown-menu {
left: -100%;
margin-left: 10px;
border-radius: 6px 0 6px 6px;
}
</style>
<script>
// manage active state of menu based on current page
$(document).ready(function () {
// active menu anchor
href = window.location.pathname
href = href.substr(href.lastIndexOf('/') + 1)
if (href === "")
href = "index.html";
var menuAnchor = $('a[href="' + href + '"]');
// mark it active
menuAnchor.parent().addClass('active');
// if it's got a parent navbar menu mark it active as well
menuAnchor.closest('li.dropdown').addClass('active');
});
</script>
<!-- tabsets -->
<style type="text/css">
.tabset-dropdown > .nav-tabs {
display: inline-table;
max-height: 500px;
min-height: 44px;
overflow-y: auto;
background: white;
border: 1px solid #ddd;
border-radius: 4px;
}
.tabset-dropdown > .nav-tabs > li.active:before {
content: "";
font-family: 'Glyphicons Halflings';
display: inline-block;
padding: 10px;
border-right: 1px solid #ddd;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open > li.active:before {
content: "";
border: none;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open:before {
content: "";
font-family: 'Glyphicons Halflings';
display: inline-block;
padding: 10px;
border-right: 1px solid #ddd;
}
.tabset-dropdown > .nav-tabs > li.active {
display: block;
}
.tabset-dropdown > .nav-tabs > li > a,
.tabset-dropdown > .nav-tabs > li > a:focus,
.tabset-dropdown > .nav-tabs > li > a:hover {
border: none;
display: inline-block;
border-radius: 4px;
background-color: transparent;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open > li {
display: block;
float: none;
}
.tabset-dropdown > .nav-tabs > li {
display: none;
}
</style>
<!-- code folding -->
</head>
<body>
<div class="container-fluid main-container">
<div class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar">
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="index.html">Derek Corcoran</a>
</div>
<div id="navbar" class="navbar-collapse collapse">
<ul class="nav navbar-nav">
<li>
<a href="index.html">Home</a>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
<span class="fa fa-gear"></span>
Cursos
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li class="dropdown-header">Cursos</li>
<li>
<a href="Libro/_book/index.html">Curso de R</a>
</li>
<li>
<a href="CursoMulti/_book/index.html">Curso modelos multivariados</a>
</li>
<li>
<a href="AyduantiaStats/_book/index.html">BIO249c</a>
</li>
<li>
<a href="CursoProgramacion/_book/index.html">Curso de Programación</a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
<span class="fa fa-gear"></span>
Tareas
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="Tarea_2.html">Tarea interactiva 1</a>
</li>
</ul>
</li>
<li>
<a href="DondeVivir.html">Donde vivir</a>
</li>
<li>
<a href="Polen.html">Alergia en Chile</a>
</li>
<li>
<a href="Earthquake.html">Earthquakes in Chile</a>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
<span class="fa fa-gear"></span>
RPackages
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li class="dropdown-header">RPackages</li>
<li>
<a href="SpatialBall.html">SpatialBall</a>
</li>
<li>
<a href="Starting.html">SpatialBall2</a>
</li>
<li>
<a href="VignetteNetworkExt.html">NetworkExtinction</a>
</li>
</ul>
</li>
</ul>
<ul class="nav navbar-nav navbar-right">
</ul>
</div><!--/.nav-collapse -->
</div><!--/.container -->
</div><!--/.navbar -->
<div class="fluid-row" id="header">
<h1 class="title toc-ignore">How to use the NetworExtinction Package</h1>
<h4 class="author">Isidora Avila and Derek Corcoran</h4>
<h4 class="date">2020-11-09</h4>
</div>
<div id="TOC">
<ul>
<li><a href="#how-to-install-the-package"><span class="toc-section-number">0.1</span> How to install the package</a></li>
<li><a href="#how-to-represent-a-food-web-in-r"><span class="toc-section-number">0.2</span> How to represent a food-web in R</a></li>
<li><a href="#functions"><span class="toc-section-number">1</span> Functions</a><ul>
<li><a href="#extinctions-functions"><span class="toc-section-number">1.1</span> Extinctions functions</a><ul>
<li><a href="#extinctions-from-most-to-less-conected-species-in-the-network"><span class="toc-section-number">1.1.1</span> Extinctions from most to less conected species in the network</a></li>
<li><a href="#extinctions-using-a-customized-order"><span class="toc-section-number">1.1.2</span> Extinctions using a customized order</a></li>
<li><a href="#random-extinction"><span class="toc-section-number">1.1.3</span> Random extinction</a></li>
</ul></li>
<li><a href="#plotting-the-extinction-histories-of-a-network"><span class="toc-section-number">1.2</span> Plotting the extinction histories of a network</a></li>
<li><a href="#degree-distribution-function"><span class="toc-section-number">1.3</span> Degree distribution function</a></li>
</ul></li>
</ul>
</div>
<p>#Introduction</p>
<p>The objectives of the <em>NetworkExtinction</em> package is to analyze and visualize the topology of food-webs and its responses to the simulated extinction of species.</p>
<p>The main indexes used for these analyzes are:</p>
<ol style="list-style-type: decimal">
<li><p>Number of nodes: Total number of species in the network <span class="citation">(Dunne, Williams, and Martinez 2002)</span>.</p></li>
<li><p>Number of links: Number of trophic relationships represented in the food web <span class="citation">(Dunne, Williams, and Martinez 2002)</span>.</p></li>
<li><p>Connectance: Proportion of all possible trophic links that are completed <span class="citation">(Dunne, Williams, and Martinez 2002)</span>.</p></li>
<li><p>Primary removals: It occurs when the researcher intentionally removes one species, simulating a single extinction.</p></li>
<li><p>Secondary extinctions: A secondary extinction occurs when a non-basal species loses all of its prey items due to the removal of another species. In this context, basal species can experience primary removal, but not secondary extinctions <span class="citation">(Dunne, Williams, and Martinez 2002)</span>.</p></li>
<li><p>Total extinctions: The sum of primary removal and secondary extinctions in one simulation.</p></li>
</ol>
<p>This package was built with a total of six functions. There are four functions to analyze the cascading effect of extinctions in a food-web, one function to plot the results of any of the extinction analysis, and another to analize the degree distribution in the network.</p>
<p>Functions to analyze the cascading effect of extinctions are the following:</p>
<ul>
<li><p><em>Mostconnected:</em> To simulate extinctions from the most connected species to less connected in the network.</p></li>
<li><p><em>ExtinctionOrder:</em> To simulate extinctions in a customized order.</p></li>
<li><p><em>RandomExtinctions:</em> To develop a null hypothesis by generating random orders of simulated extinctions.</p></li>
<li><p><em>CompareExtinctions:</em> To compare the observed secondary extinctions with the expected secondary extinction generated by random extinction.</p></li>
</ul>
<p>The function to plot results is:</p>
<ul>
<li><em>ExtinctionPlot:</em> To plot the results of any of the extinction functions</li>
</ul>
<p>The function to analize the degree distribution is:</p>
<ul>
<li><em>degree_distribution:</em> To test if the degrees in the network follow a power law, exponential, or truncated distribution.</li>
</ul>
<div id="how-to-install-the-package" class="section level2">
<h2><span class="header-section-number">0.1</span> How to install the package</h2>
<p>As any package in cran the <em>install.packages</em> function can be used to intall de <em>NetworkExtinction</em> package as shown in the following code.</p>
<pre class="r"><code>install.packages(NetworkExtinction)
library(NetworkExtinction)</code></pre>
</div>
<div id="how-to-represent-a-food-web-in-r" class="section level2">
<h2><span class="header-section-number">0.2</span> How to represent a food-web in R</h2>
<p>The first step to make any analysis in the <em>NetworkExtinction</em> package is to build a representation of a food-web, using the network package <span class="citation">(Butts and others 2008)</span>.</p>
<p>In order to create a network object you can start with a matrix or an edgelist object (for more details see the <a href="(https://cran.r-project.org/web/packages/network/vignettes/networkVignette.pdf)">network package vignette</a>).</p>
<p>As an example of how to build a food-web we will explain how to create the network shown in figure 1.</p>
<div class="figure">
<img src="toymodel_trophic-network5.jpg" alt="Figure 1. Food-web to be contructed in R" />
<p class="caption">Figure 1. Food-web to be contructed in R</p>
</div>
<p>This network has ten nodes where each node represents one species. Here, four nodes are basal species (primary producers, from sp.1 to sp.4), three nodes are intermediate (primary consumers, from sp.5 to sp.7), and the remaining three are top predators (from sp.8 to sp.10).</p>
<p>In order to build an interaction matrix (Figure 2) that represent the food-web, we create a square matrix with a column and a row representing each species. Columns represent the consumers and the rows the resources, where 1 represents a trophic interaction and 0 its absence. Note that in the columns, the first four species only have zeros because they are not consumers. For example, if we look at species 7, it feeds on species 4 and 3. In order to represent that, we would go to column 7 and put a 1 in rows 3 and 4.</p>
<div class="figure">
<img src="matrix.jpg" alt="Figure 2. Matrix representation of the food-web" />
<p class="caption">Figure 2. Matrix representation of the food-web</p>
</div>
<p>The following code is an example of how to build the matrix in figure 2 using R:</p>
<pre class="r"><code>a<- matrix(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0),nrow=10, ncol=10)
a
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
#> [1,] 0 0 0 0 1 0 0 0 0 0
#> [2,] 0 0 0 0 0 1 0 0 0 1
#> [3,] 0 0 0 0 0 0 1 0 0 0
#> [4,] 0 0 0 0 0 0 1 0 0 0
#> [5,] 0 0 0 0 0 0 0 1 0 0
#> [6,] 0 0 0 0 0 0 0 1 1 0
#> [7,] 0 0 0 0 0 0 0 0 0 1
#> [8,] 0 0 0 0 0 0 0 0 0 1
#> [9,] 0 0 0 0 0 0 0 0 0 0
#> [10,] 0 0 0 0 0 0 0 0 0 0</code></pre>
<p>Once the matrix is ready, we use the <em>as.network</em> function from the <em>network</em> package to build a network object.</p>
<pre class="r"><code>library(network)
net <- as.network(a, loops = TRUE)
net
#> Network attributes:
#> vertices = 10
#> directed = TRUE
#> hyper = FALSE
#> loops = TRUE
#> multiple = FALSE
#> bipartite = FALSE
#> total edges= 10
#> missing edges= 0
#> non-missing edges= 10
#>
#> Vertex attribute names:
#> vertex.names
#>
#> No edge attributes</code></pre>
</div>
<div id="functions" class="section level1">
<h1><span class="header-section-number">1</span> Functions</h1>
<div id="extinctions-functions" class="section level2">
<h2><span class="header-section-number">1.1</span> Extinctions functions</h2>
<div id="extinctions-from-most-to-less-conected-species-in-the-network" class="section level3">
<h3><span class="header-section-number">1.1.1</span> Extinctions from most to less conected species in the network</h3>
<p>The <em>Mostconnected</em> function sorts the species from the most connected node to the least connected node, using total degree. Then, it removes the most connected node in the network, simulating its extinction, and recalculates the topological indexes of the network and counts how many species have indegree 0 (secondary extinction), not considering primary producers. Then, it removes the nodes that were secondarily extinct in the previous step and recalculates which node is the new most connected species. This step is repeated until the number of links in the network is zero <span class="citation">(Sole and Montoya 2001; Dunne, Williams, and Martinez 2002; Dunne and Williams 2009)</span>.</p>
<pre class="r"><code>library(NetworkExtinction)
data("net")
Mostconnected(Network = net)</code></pre>
<pre><code>#> [1] 1
#> [1] 2
#> [1] 3
#> [1] 4</code></pre>
<table>
<caption>Table 1: The resulting dataframe of the Mostconnected function</caption>
<thead>
<tr class="header">
<th align="right">Spp</th>
<th align="right">nodesS</th>
<th align="right">linksS</th>
<th align="right">Conectance</th>
<th align="right">LinksPerSpecies</th>
<th align="right">Secondary_extinctions</th>
<th align="right">isolated_nodes</th>
<th align="right">AccSecondaryExtinction</th>
<th align="right">NumExt</th>
<th align="right">TotalExt</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td align="right">6</td>
<td align="right">9</td>
<td align="right">7</td>
<td align="right">0.0864198</td>
<td align="right">0.7777778</td>
<td align="right">1</td>
<td align="right">1</td>
<td align="right">1</td>
<td align="right">1</td>
<td align="right">2</td>
</tr>
<tr class="even">
<td align="right">7</td>
<td align="right">7</td>
<td align="right">4</td>
<td align="right">0.0816327</td>
<td align="right">0.5714286</td>
<td align="right">0</td>
<td align="right">2</td>
<td align="right">1</td>
<td align="right">2</td>
<td align="right">3</td>
</tr>
<tr class="odd">
<td align="right">5</td>
<td align="right">6</td>
<td align="right">2</td>
<td align="right">0.0555556</td>
<td align="right">0.3333333</td>
<td align="right">1</td>
<td align="right">3</td>
<td align="right">2</td>
<td align="right">3</td>
<td align="right">5</td>
</tr>
<tr class="even">
<td align="right">2</td>
<td align="right">4</td>
<td align="right">0</td>
<td align="right">0.0000000</td>
<td align="right">0.0000000</td>
<td align="right">1</td>
<td align="right">4</td>
<td align="right">3</td>
<td align="right">4</td>
<td align="right">7</td>
</tr>
</tbody>
</table>
<p>The result of this function is the dataframe shown in table 1. The first column called <em>Spp</em> indicates the order in which the species were removed simulating an extinction. The column <em>Secondary_extinctions</em> represents the numbers of species that become extinct given that they do not have any food items left in the food-web, while the <em>AccSecondaryExtinction</em> column represents the accumulated secondary extinctions. (To plot the results, see function <em>ExtinctionPlot</em>.)</p>
<pre class="r"><code>data("net")
history <- Mostconnected(Network = net)
#> [1] 1
#> [1] 2
#> [1] 3
#> [1] 4
ExtinctionPlot(History = history, Variable = "AccSecondaryExtinction")</code></pre>
<div class="figure">
<img src="VignetteNetworkExt_files/figure-html/unnamed-chunk-6-1.png" alt="Figure 3. The graph shows the number of accumulated secondary extinctions that occur when removing species from the most to the least connected species" width="576" />
<p class="caption">
Figure 3. The graph shows the number of accumulated secondary extinctions that occur when removing species from the most to the least connected species
</p>
</div>
</div>
<div id="extinctions-using-a-customized-order" class="section level3">
<h3><span class="header-section-number">1.1.2</span> Extinctions using a customized order</h3>
<p>The <em>ExtinctionOrder</em> function takes a network and extinguishes nodes using a customized order. Then, it calculates the topological network indexes and the secondary extinctions.</p>
<pre class="r"><code>data("net")
ExtinctionOrder(Network = net, Order = c(2,4,7))</code></pre>
<table>
<caption>Table 2: The resulting dataframe of the ExtinctionOrder function</caption>
<thead>
<tr class="header">
<th align="right">Spp</th>
<th align="right">nodesS</th>
<th align="right">linksS</th>
<th align="right">Conectance</th>
<th align="right">Secondary_extinctions</th>
<th align="right">AccSecondaryExtinction</th>
<th align="right">NumExt</th>
<th align="right">TotalExt</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td align="right">2</td>
<td align="right">9</td>
<td align="right">8</td>
<td align="right">0.0987654</td>
<td align="right">1</td>
<td align="right">1</td>
<td align="right">1</td>
<td align="right">2</td>
</tr>
<tr class="even">
<td align="right">4</td>
<td align="right">7</td>
<td align="right">5</td>
<td align="right">0.1020408</td>
<td align="right">1</td>
<td align="right">2</td>
<td align="right">2</td>
<td align="right">4</td>
</tr>
<tr class="odd">
<td align="right">7</td>
<td align="right">5</td>
<td align="right">3</td>
<td align="right">0.1200000</td>
<td align="right">0</td>
<td align="right">2</td>
<td align="right">3</td>
<td align="right">5</td>
</tr>
</tbody>
</table>
<div class="figure">
<img src="VignetteNetworkExt_files/figure-html/unnamed-chunk-9-1.png" alt="Figure 4. The graph shows the number of accumulated secondary extinctions that occur when removing species in a custom order. In this example species 2 is removed followed by 4 and lastly species 7 is removed" width="576" />
<p class="caption">
Figure 4. The graph shows the number of accumulated secondary extinctions that occur when removing species in a custom order. In this example species 2 is removed followed by 4 and lastly species 7 is removed
</p>
</div>
<p>The results of this function are a dataframe with the topological indexes of the network calculated from each extinction step (Table 2), and a plot that shows the number of accumulated secondary extinctions that occured with each removed node (Figure 4).</p>
</div>
<div id="random-extinction" class="section level3">
<h3><span class="header-section-number">1.1.3</span> Random extinction</h3>
<p>The <em>RandomExtinctions</em> function generates n random extinction orders, determined by the argument <em>nsim</em>. The first result of this function is a dataframe (table 3). The column <em>NumExt</em> represents the number of species removed, <em>AccSecondaryExtinction</em> is the average number of secondary extinctions for each species removed, and <em>SdAccSecondaryExtinction</em> is its standard deviation. The second result is a graph (figure 5), where the x axis is the number of species removed and the y axis is the number of accumulated secondary extinctions. The solid line is the average number of secondary extinctions for every simulated primary extinction, and the red area represents the mean <span class="math inline">\(\pm\)</span> the standard deviation of the simulations.</p>
<pre class="r"><code>data(net)
RandomExtinctions(Network= net, nsim= 500)</code></pre>
<table>
<caption>Table 3: The resulting dataframe of the RandomExtinctions function</caption>
<thead>
<tr class="header">
<th align="right">NumExt</th>
<th align="right">SdAccSecondaryExtinction</th>
<th align="right">AccSecondaryExtinction</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td align="right">1</td>
<td align="right">0.4587165</td>
<td align="right">0.300000</td>
</tr>
<tr class="even">
<td align="right">2</td>
<td align="right">0.7549941</td>
<td align="right">0.682000</td>
</tr>
<tr class="odd">
<td align="right">3</td>
<td align="right">0.9540547</td>
<td align="right">1.140000</td>
</tr>
<tr class="even">
<td align="right">4</td>
<td align="right">1.0935849</td>
<td align="right">1.592000</td>
</tr>
<tr class="odd">
<td align="right">5</td>
<td align="right">1.1795574</td>
<td align="right">1.993865</td>
</tr>
<tr class="even">
<td align="right">6</td>
<td align="right">1.2518519</td>
<td align="right">2.235981</td>
</tr>
<tr class="odd">
<td align="right">7</td>
<td align="right">1.1971914</td>
<td align="right">2.231270</td>
</tr>
<tr class="even">
<td align="right">8</td>
<td align="right">1.1779286</td>
<td align="right">2.258065</td>
</tr>
<tr class="odd">
<td align="right">9</td>
<td align="right">1.1227299</td>
<td align="right">2.320755</td>
</tr>
</tbody>
</table>
<div class="figure">
<img src="VignetteNetworkExt_files/figure-html/unnamed-chunk-12-1.png" alt="Figure 5. The resulting graph of the RandomExtinctions function" width="576" />
<p class="caption">
Figure 5. The resulting graph of the RandomExtinctions function
</p>
</div>
<p>###Comparison of Null hypothesis with other extinction histories</p>
<p>The <em>RandomExtinctons</em> function generates a null hypothesis for us to compare it with either an extinction history generated by the <em>ExtinctionOrder</em> function or the <em>Mostconnected</em> function. In order to compare the expected extinctions developed by our null hypothesis with the observed extinction history, we developed the <em>CompareExtinctions</em> function. The way to use this last function is to first create the extinction history and the null hypothesis, and then the <em>CompareExtinctins</em> function to compare both extinction histories.</p>
<pre class="r"><code>data("net")
History <- ExtinctionOrder(Network = net, Order = c(1,2,3,4,5,6,7,8,9,10))
set.seed(2)
NullHyp <- RandomExtinctions(Network = net, nsim = 500)
Comparison <- CompareExtinctions(Nullmodel = NullHyp, Hypothesis = History)</code></pre>
<p>The first result will be a graph (Figue 6) with a dashed line showing the observed extinction history and a solid line showing the expected value of secondary extinctions randomly generated.</p>
<p>The second result will be a Test object which will show the goodness of fit statistics of the comparison. In this case, since the p value is 0.22 which is larger than 0.05, we consider that the generated extinction history is significantly different than the null hypothesis.</p>
<div class="figure">
<img src="VignetteNetworkExt_files/figure-html/unnamed-chunk-14-1.png" alt="Figure 6. The resulting graph of the CompareExtinctions function, where the dashed line shows the observed extinction history, and a solid line shows the expected value of secondary extinctions originated at random" width="576" />
<p class="caption">
Figure 6. The resulting graph of the CompareExtinctions function, where the dashed line shows the observed extinction history, and a solid line shows the expected value of secondary extinctions originated at random
</p>
</div>
<pre class="r"><code>Comparison$Test
#>
#> Pearson's Chi-squared test
#>
#> data: Hypothesis$DF$AccSecondaryExtinction and Nullmodel$sims$AccSecondaryExtinction[1:length(Hypothesis$DF$AccSecondaryExtinction)]
#> X-squared = 20, df = 16, p-value = 0.2202</code></pre>
</div>
</div>
<div id="plotting-the-extinction-histories-of-a-network" class="section level2">
<h2><span class="header-section-number">1.2</span> Plotting the extinction histories of a network</h2>
<p>The <em>ExtinctionPlot</em> function takes a NetworkTopology class object and plots the index of interest after every extinction. By default, the function plots the number of accumulated secondary extinctions after every primary extinction (Figure 7), but any of the indexes can be ploted with the function by changing the Variable argument (Figure 8).</p>
<pre class="r"><code>data(net)
history <- Mostconnected(Network = net)
#> [1] 1
#> [1] 2
#> [1] 3
#> [1] 4
ExtinctionPlot(History = history)</code></pre>
<div class="figure">
<img src="VignetteNetworkExt_files/figure-html/unnamed-chunk-16-1.png" alt="Figure 7. Example of the use of the ExtinctionPlot function showing the accumulated secondary extinctions against number of extinctions" width="576" />
<p class="caption">
Figure 7. Example of the use of the ExtinctionPlot function showing the accumulated secondary extinctions against number of extinctions
</p>
</div>
<pre class="r"><code>ExtinctionPlot(History = history, Variable = "LinksPerSpecies")</code></pre>
<div class="figure">
<img src="VignetteNetworkExt_files/figure-html/unnamed-chunk-17-1.png" alt="Figure 8. Another example of the use of the ExtinctionPlot function showing the number of links per species against number of extinctions" width="576" />
<p class="caption">
Figure 8. Another example of the use of the ExtinctionPlot function showing the number of links per species against number of extinctions
</p>
</div>
</div>
<div id="degree-distribution-function" class="section level2">
<h2><span class="header-section-number">1.3</span> Degree distribution function</h2>
<p>The <em>degree_distribution</em> function calculates the cumulative distribution of the number of links that each species in the food network has <span class="citation">(Estrada 2007)</span>. Then, the observed distribution is fitted to the exponential, power-law and truncated power-law distribution models.</p>
<p>The results of this function are shown in figure 9 and table 4. The graph shows the observed degree distribution in a log-log scale fitting the three models mentioned above, for this example we use an example dataset of Chilean litoral rocky shores <span class="citation">(Kéfi et al. 2015)</span>. The table shows the fitted model information ordered by descending AIC, that is, the model in the first row is the most probable distribution, followed by the second an finally the third distribution in this case (Table 3), the Exponential distribution would be the best model, followed by the Power-law and finally the Truncated power-law model.</p>
<pre class="r"><code>data("chilean_intertidal")
degree_distribution(chilean_intertidal, name = "Test")</code></pre>
<div class="figure">
<img src="VignetteNetworkExt_files/figure-html/unnamed-chunk-20-1.png" alt="Figure 9: Fitted vs observed values of the degree distribution. The black line and points show the observed values, the red, green and blue lines show the fitted values for the Exponential, power law and trucated distribution, respectively" width="576" />
<p class="caption">
Figure 9: Fitted vs observed values of the degree distribution. The black line and points show the observed values, the red, green and blue lines show the fitted values for the Exponential, power law and trucated distribution, respectively
</p>
</div>
<table>
<caption>Table 4: Model selection analysis</caption>
<thead>
<tr class="header">
<th align="right">sigma</th>
<th align="left">isConv</th>
<th align="right">finTol</th>
<th align="right">logLik</th>
<th align="right">AIC</th>
<th align="right">BIC</th>
<th align="right">deviance</th>
<th align="right">df.residual</th>
<th align="left">model</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td align="right">0.0922763</td>
<td align="left">TRUE</td>
<td align="right">8.8e-06</td>
<td align="right">66.057711</td>
<td align="right">-128.115423</td>
<td align="right">-123.676408</td>
<td align="right">0.5704994</td>
<td align="right">67</td>
<td align="left">Exponential</td>
</tr>
<tr class="even">
<td align="right">0.2246009</td>
<td align="left">TRUE</td>
<td align="right">2.3e-06</td>
<td align="right">5.420293</td>
<td align="right">-6.840586</td>
<td align="right">-2.461276</td>
<td align="right">3.2789603</td>
<td align="right">65</td>
<td align="left">Power</td>
</tr>
<tr class="odd">
<td align="right">0.4845141</td>
<td align="left">TRUE</td>
<td align="right">3.2e-06</td>
<td align="right">-45.321942</td>
<td align="right">94.643884</td>
<td align="right">99.023194</td>
<td align="right">15.2590056</td>
<td align="right">65</td>
<td align="left">truncated</td>
</tr>
</tbody>
</table>
<p>The main objective of fitting the cumulative distribution of the degrees to those models, is to determine if the vulnerability of the network to the removal of the most connected species is related to their degree distribution. Networks that follow a power law distribution are very vulnerable to the removal of the most connected nodes, while networks that follow exponential degree distribution are less vulnerable to the removal of the most connected nodes <span class="citation">(see Albert and Barabási 2002, <span class="citation">@dunne2002food</span>, <span class="citation">@estrada2007food</span>, <span class="citation">@de2013topological</span>)</span>.</p>
<p>#Bibliography</p>
<div id="refs" class="references">
<div id="ref-albert2002statistical">
<p>Albert, Réka, and Albert-László Barabási. 2002. “Statistical Mechanics of Complex Networks.” <em>Reviews of Modern Physics</em> 74 (1). APS: 47.</p>
</div>
<div id="ref-butts2008network">
<p>Butts, Carter T, and others. 2008. “Network: A Package for Managing Relational Data in R.” <em>Journal of Statistical Software</em> 24 (2): 1–36.</p>
</div>
<div id="ref-dunne2009cascading">
<p>Dunne, Jennifer A, and Richard J Williams. 2009. “Cascading Extinctions and Community Collapse in Model Food Webs.” <em>Philosophical Transactions of the Royal Society B: Biological Sciences</em> 364 (1524). The Royal Society: 1711–23.</p>
</div>
<div id="ref-dunne2002food">
<p>Dunne, Jennifer A, Richard J Williams, and Neo D Martinez. 2002. “Food-Web Structure and Network Theory: The Role of Connectance and Size.” <em>Proceedings of the National Academy of Sciences</em> 99 (20). National Acad Sciences: 12917–22.</p>
</div>
<div id="ref-estrada2007food">
<p>Estrada, Ernesto. 2007. “Food Webs Robustness to Biodiversity Loss: The Roles of Connectance, Expansibility and Degree Distribution.” <em>Journal of Theoretical Biology</em> 244 (2). Elsevier: 296–307.</p>
</div>
<div id="ref-kefi2015network">
<p>Kéfi, Sonia, Eric L Berlow, Evie A Wieters, Lucas N Joppa, Spencer A Wood, Ulrich Brose, and Sergio A Navarrete. 2015. “Network Structure Beyond Food Webs: Mapping Non-Trophic and Trophic Interactions on Chilean Rocky Shores.” <em>Ecology</em> 96 (1). Wiley Online Library: 291–303.</p>
</div>
<div id="ref-de2013topological">
<p>Santana, Charles N de, Alejandro F Rozenfeld, Pablo A Marquet, and Carlos M Duarte. 2013. “Topological Properties of Polar Food Webs.” <em>Marine Ecology Progress Series</em> 474: 15–26.</p>
</div>
<div id="ref-sole2001complexity">
<p>Sole, Ricard V, and M Montoya. 2001. “Complexity and Fragility in Ecological Networks.” <em>Proceedings of the Royal Society of London B: Biological Sciences</em> 268 (1480). The Royal Society: 2039–45.</p>
</div>
</div>
</div>
</div>
<p>Copyright © 2017 Cienciaustral, Inc. <img src="https://ia601308.us.archive.org/13/items/LogoCuadrado3/logo%20cuadrado%203.jpg" height="20" width="20"/> All rights reserved.</p>
</div>
<script>
// add bootstrap table styles to pandoc tables
function bootstrapStylePandocTables() {
$('tr.odd').parent('tbody').parent('table').addClass('table table-condensed');
}
$(document).ready(function () {
bootstrapStylePandocTables();
});
</script>
<!-- tabsets -->
<script>
$(document).ready(function () {
window.buildTabsets("TOC");
});
$(document).ready(function () {
$('.tabset-dropdown > .nav-tabs > li').click(function () {
$(this).parent().toggleClass('nav-tabs-open')
});
});
</script>
<!-- code folding -->
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>