forked from divelab/AIRS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalgorithm.py
215 lines (161 loc) · 8.49 KB
/
algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import itertools
import numpy as np
from functions.series import cython_upper_bessel, cython_upper_bessel_k, cython_gsl_sf_gamma, cython_gsl_sf_gamma_inc
from joblib import delayed, Parallel
NUM_CPUS = 32
def zeta_cal(v, w, vecs, vecs_inv, d, det, p=1.0, eps=1e-12):
result = sum(
np.e ** (2 * np.pi * 1.0j * vecs @ w) * cython_upper_bessel(-p, np.linalg.norm(vecs + v, axis=1) ** 2, 0,
eps)
+ np.e ** (2 * np.pi * 1.0j * v @ w) / det * np.pi ** (d / 2) * np.e ** (
-2 * np.pi * 1.0j * vecs_inv @ v)
* cython_upper_bessel(p - d / 2, np.pi ** 2 * np.linalg.norm(vecs_inv + w, axis=1) ** 2, 0, eps))
if (v == 0).all():
result = result - 1.0 / p
else:
result = result + cython_upper_bessel_k(-p, np.linalg.norm(v) ** 2, 0, eps)
if (w == 0).all():
result = result - np.pi ** (d / 2) / ((d / 2 - p) * det)
else:
result = result + np.e ** (2 * np.pi * 1.0j * v @ w) / det * np.pi ** (d / 2) \
* cython_upper_bessel_k(p - d / 2, np.pi ** 2 * np.linalg.norm(w) ** 2, 0, eps)
return result
def epstein(v, w, Omega, param=1.0, R=3, eps=1e-12, parallel=False, verbose=False):
d = Omega.shape[0]
assert len(np.shape(v)) == len(np.shape(w))
if len(np.shape(v)) == 1:
v = [v]
w = [w]
v = np.array(v, dtype=np.double)
w = np.array(w, dtype=np.double)
num_vectors = v.shape[0]
# normalization
det = np.linalg.det(Omega)
assert det > 0
gamma_norm = det ** (1.0 / d)
Omega = Omega / gamma_norm
Omega_inv = np.linalg.inv(Omega).T
v = v / gamma_norm
w = w * gamma_norm
det = 1.0
gamma_p = cython_gsl_sf_gamma(param)
products = np.array([l for l in itertools.product(*[list(range(-R, R + 1)) for _ in range(d)]) if any(l)])
vecs = products @ Omega
vecs_inv = products @ Omega_inv
if verbose:
for i in range(num_vectors):
rounds = np.array([l for l in itertools.product(*[list(range(-1, 2)) for _ in range(d)]) if any(l)])
_, s1, _ = np.linalg.svd(Omega)
minor_minus1 = np.clip(s1[-1] * R - np.linalg.norm(v[i]), a_min=0, a_max=np.inf) ** 2
error_radius1 = np.sqrt(minor_minus1)
rho1 = np.min(np.linalg.norm(rounds @ Omega, axis=1))
error1 = d / 2 * (2 / rho1) ** d * cython_gsl_sf_gamma_inc(d / 2, (error_radius1 - rho1 / 2) ** 2)
_, s2, _ = np.linalg.svd(Omega_inv)
minor_minus2 = np.clip(s2[-1] * R - np.linalg.norm(w[i]), a_min=0, a_max=np.inf) ** 2
error_radius2 = np.sqrt(np.pi ** 2 * minor_minus2)
rho2 = np.pi * np.min(np.linalg.norm(rounds @ Omega_inv, axis=1))
error2 = d / 2 * (2 / rho2) ** d * cython_gsl_sf_gamma_inc(d / 2, (error_radius2 - rho2 / 2) ** 2)
print("Error upper bound for " + str(i) + " vector is " + str(error1 + error2))
if not parallel:
values = np.array(
[zeta_cal(v[i], w[i], vecs, vecs_inv, d, det, p=param, eps=eps).real for i in range(num_vectors)],
dtype=np.double)
else:
values = np.array(Parallel(n_jobs=NUM_CPUS)(
delayed(zeta_cal)(v[i], w[i], vecs, vecs_inv, d, det, param, eps) for i in range(num_vectors)))
return values * gamma_norm ** (-2 * param) / gamma_p
# Coulomb
def zeta(v, Omega, param=1.0, R=3, eps=1e-12, parallel=False, verbose=False):
return epstein(v, np.zeros_like(v), Omega, param=param, R=R, eps=eps, parallel=parallel, verbose=verbose)
def exp_cal(v, vecs, vecs_inv, d, det, B, eps=1e-12):
return sum(np.e ** (2 * np.pi * 1.0j * vecs_inv @ v) / det *
cython_upper_bessel(- 0.5 - d / 2, B + np.pi * np.linalg.norm(vecs_inv, axis=1) ** 2, 0, eps) +
cython_upper_bessel(0.5, np.pi * np.linalg.norm(vecs + v, axis=1) ** 2, B, eps)).real
# Pauli
def exp(v, Omega, param=1.0, R=3, eps=1e-12, parallel=False, verbose=False):
d = Omega.shape[0]
if len(np.shape(v)) == 1:
v = [v]
v = np.array(v, dtype=np.double)
num_vectors = v.shape[0]
det = np.linalg.det(Omega)
assert det > 0
gamma_norm = det ** (1.0 / d)
Omega = Omega / gamma_norm
Omega_inv = np.linalg.inv(Omega).T
v = v / gamma_norm
det = 1.0
param = param * np.sqrt(gamma_norm)
products = np.array([l for l in itertools.product(*[list(range(-R, R + 1)) for _ in range(d)])])
vecs = products @ Omega
vecs_inv = products @ Omega_inv
if verbose:
for i in range(num_vectors):
rounds = np.array([l for l in itertools.product(*[list(range(-1, 2)) for _ in range(d)]) if any(l)])
_, s1, _ = np.linalg.svd(Omega)
minor_minus1 = np.clip(s1[-1] * R - np.linalg.norm(v[i]), a_min=0, a_max=np.inf) ** 2
error_radius1 = np.sqrt(np.pi * minor_minus1)
rho1 = np.sqrt(np.pi) * np.min(np.linalg.norm(rounds @ Omega, axis=1))
error1 = d / 2 * (2 / rho1) ** d * cython_gsl_sf_gamma_inc(d / 2, (error_radius1 - rho1 / 2) ** 2)
_, s2, _ = np.linalg.svd(Omega_inv)
minor_minus2 = np.clip(s2[-1] * R, a_min=0, a_max=np.inf) ** 2
error_radius2 = np.sqrt(np.pi * minor_minus2)
rho2 = np.sqrt(np.pi) * np.min(np.linalg.norm(rounds @ Omega_inv, axis=1))
error2 = d / 2 * (2 / rho2) ** d * cython_gsl_sf_gamma_inc(d / 2, (error_radius2 - rho2 / 2) ** 2)
print("Error upper bound for " + str(i) + " vector is " + str(error1 + error2))
B = param ** 2 / 4.0 / np.pi
if not parallel:
values = np.array([exp_cal(v[i], vecs, vecs_inv, d, det, B, eps) for i in range(num_vectors)], dtype=np.double)
else:
values = np.array(Parallel(n_jobs=NUM_CPUS)(
delayed(exp_cal)(v[i], vecs, vecs_inv, d, det, B, eps) for i in range(num_vectors)))
return values * param / 2.0 / np.pi
# TODO: Add error bound approximation for LJ potential
def lj(v, Omega, param=1.0, R=3, eps=1e-12, parallel=False, verbose=False):
if verbose:
raise NotImplementedError("Error bound for LJ potential is not implemented yet")
return param ** 12 * zeta(v, Omega, param=6.0, R=R, eps=eps, parallel=parallel) - \
param ** 6 * zeta(v, Omega, param=3.0, R=R, eps=eps, parallel=parallel)
# TODO: Add error bound approximation for morse potential
def morse(v, Omega, param=1.0, re=1.0, R=3, eps=1e-12, parallel=False, verbose=False):
if verbose:
raise NotImplementedError("Error bound for morse potential is not implemented yet")
return np.exp(2.0 * param * re) * exp(v, Omega, param=2.0 * param, R=R, eps=eps, parallel=parallel) - \
2.0 * np.exp(param * re) * exp(v, Omega, param=param, R=R, eps=eps, parallel=parallel)
def screened_coulomb_cal(v, vecs, vecs_inv, d, det, B, eps=1e-12):
result = sum(np.e ** (2 * np.pi * 1.0j * vecs_inv @ v) * np.pi ** (d / 2) / det *
cython_upper_bessel(0.5 - d / 2, B + np.pi ** 2 * np.linalg.norm(vecs_inv, axis=1) ** 2, 0, eps) +
cython_upper_bessel(-0.5, np.linalg.norm(vecs + v, axis=1) ** 2, B, eps)).real
if (v == 0).all():
result = result + B ** 0.5 * (cython_gsl_sf_gamma(-0.5) - cython_gsl_sf_gamma_inc(-0.5, B))
else:
result = result + cython_upper_bessel_k(-0.5, np.linalg.norm(v) ** 2, B, eps)
return result
# TODO: Add error bound approximation for screened coulomb potential
def screened_coulomb(v, Omega, param=1.0, R=3, eps=1e-12, parallel=False, verbose=False):
d = Omega.shape[0]
if len(np.shape(v)) == 1:
v = [v]
v = np.array(v, dtype=np.double)
num_vectors = v.shape[0]
det = np.linalg.det(Omega)
assert det > 0
gamma_norm = det ** (1.0 / d)
Omega = Omega / gamma_norm
Omega_inv = np.linalg.inv(Omega).T
v = v / gamma_norm
det = 1.0
param = param * np.sqrt(gamma_norm)
products = np.array([l for l in itertools.product(*[list(range(-R, R + 1)) for _ in range(d)]) if any(l)])
vecs = products @ Omega
vecs_inv = products @ Omega_inv
B = param ** 2
if verbose:
raise NotImplementedError("Error bound for screened coulomb potential is not implemented yet")
if not parallel:
values = np.array([screened_coulomb_cal(v[i], vecs, vecs_inv, d, det, B, eps) for i in range(num_vectors)],
dtype=np.double)
else:
values = np.array(Parallel(n_jobs=NUM_CPUS)(
delayed(screened_coulomb_cal)(v[i], vecs, vecs_inv, d, det, B, eps) for i in range(num_vectors)))
return values / np.sqrt(np.pi) / np.sqrt(gamma_norm)