-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathRecognize.py
94 lines (78 loc) · 3.5 KB
/
Recognize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import datetime
import os
import time
import cv2
import pandas as pd
from csv import writer
#-------------------------
def recognize_attendence():
recognizer = cv2.face.LBPHFaceRecognizer_create() # cv2.createLBPHFaceRecognizer()
recognizer.read("TrainingImageLabel"+os.sep+"Trainner.yml")
harcascadePath = "haarcascade_frontalface_default.xml"
faceCascade = cv2.CascadeClassifier(harcascadePath)
df = pd.read_csv("EmployeeDetails"+os.sep+"EmployeeDetails.csv")
font = cv2.FONT_HERSHEY_SIMPLEX
col_names = ['Id', 'Name', 'Time']
attendance = pd.DataFrame(columns=col_names)
# Initialize and start realtime video capture
cam = cv2.VideoCapture(0, cv2.CAP_DSHOW)
cam.set(3, 640) # set video width
cam.set(4, 480) # set video height
# Define min window size to be recognized as a face
minW = 0.1 * cam.get(3)
minH = 0.1 * cam.get(4)
minThreshold = 40 # Accurate minThresold = 67
while True:
ret, im = cam.read()
gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(gray, 1.2, 5,minSize = (int(minW), int(minH)),flags = cv2.CASCADE_SCALE_IMAGE)
for(x, y, w, h) in faces:
cv2.rectangle(im, (x, y), (x+w, y+h), (10, 159, 255), 2)
Id, conf = recognizer.predict(gray[y:y+h, x:x+w])
if conf < 100:
aa = df.loc[df['Id'] == Id]['Name'].values
confstr = " {0}%".format(round(100 - conf))
tt = str(Id)+"-"+aa
else:
Id = ' Unknown '
tt = str(Id)
confstr = " {0}%".format(round(100 - conf))
# if (100-conf) > 67:
if (100-conf) > minThreshold:
ts = time.time()
timeStamp = datetime.datetime.fromtimestamp(ts).strftime('%H:%M:%S')
aa = str(aa)[2:-2]
attendance.loc[len(attendance)] = [Id, aa, timeStamp]
tt = str(tt)[2:-2]
if(100-conf) > minThreshold:
tt = tt + " [Pass]"
cv2.putText(im, str(tt), (x+5,y-5), font, 1, (255, 255, 255), 2)
else:
cv2.putText(im, str(tt), (x + 5, y - 5), font, 1, (255, 255, 255), 2)
if (100-conf) > minThreshold:
cv2.putText(im, str(confstr), (x + 5, y + h - 5), font,1, (0, 255, 0),1 )
elif (100-conf) > 50:
cv2.putText(im, str(confstr), (x + 5, y + h - 5), font, 1, (0, 255, 255), 1)
else:
cv2.putText(im, str(confstr), (x + 5, y + h - 5), font, 1, (0, 0, 255), 1)
attendance = attendance.drop_duplicates(subset=['Id'], keep='first')
cv2.imshow('Attendance', im)
if (cv2.waitKey(1) == ord('q')):
break
ts = time.time()
date = datetime.datetime.fromtimestamp(ts).strftime('%Y-%m-%d')
timeStamp = datetime.datetime.fromtimestamp(ts).strftime('%H:%M:%S')
Hour, Minute, Second = timeStamp.split(":")
# fileName = "Attendance"+os.sep+"Attendance_"+date+"_"+Hour+"-"+Minute+"-"+Second+".csv"
fileName ="Attendance"+os.sep+"Attendance_"+date+".csv"
temp = os.getcwd()+os.sep+fileName
if os.path.exists(temp):
old_file = pd.read_csv(temp)
new_file = pd.concat([old_file,attendance])
new_file.drop_duplicates(subset=['Id'], keep='first',inplace=True)
new_file.to_csv(fileName, index=False)
else:
attendance.to_csv(fileName, index=False)
print("Attendance Successful")
cam.release()
cv2.destroyAllWindows()