forked from rpmuller/chem120
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathchap04-removed.tex
139 lines (125 loc) · 5.36 KB
/
chap04-removed.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
\section{References}
\begin{enumerate}
\item J. L. Slater, Phys. Rev. {\bf 34}, 1293 (1920).
\end{enumerate}
\section{Exercises}
\begin{enumerate}
\item From Section 4.4. Calculate $S^-\chi_{11}$, $S^-\chi_{10}$,
$S^-\chi_{11}$, and $S^-\chi_{00}$ for the wavefunctions in
(\ref{chap4-eqno24}) and (\ref{chap4-eqno25}). Use the results to show
that the wavefunctions are angular momentum eigenstates.
\item Show that the wavefunction (\ref{chap4-eqno33}) is a spin
eigenfunction with $S = 1/2(n - m)$.
\end{enumerate}
\subsubsection{Valence Bond Spin Eigenfunctions}
Consider the case in which we want to obtain the spin eigenfunctions
for a singlet state for some large systems, with an even number of electrons.
It is easy to get one function, namely the $Y1$ function
\begin{equation}
\left( \alpha \beta - \beta \alpha \right) \left( \alpha \beta -
\beta \alpha \right) \left( \alpha \beta - \beta \alpha \right)
\cdots
\label{chap4app-eqno22}
\end{equation}
Applying ${\hat S}^+$ to this function yields zero, and hence, it is
clearly a singlet function, $S = 0$. However, for $N > 2$, there are
other linearly independent spin functions with $S = 0$, as indicated
in Figure \ref{fig4-02}. These can be obtained as outlined
earlier. However, these procedures of building up spin functions get
very time-consuming for large $N$.
An alternate approach is to use functions like (\ref{chap4app-eqno22}) but with the
electrons renumbered. For example, with $N = 4$ we get three such functions
\begin{eqnarray}
\chi_{12,34} = \left[ \alpha ( 1 ) \beta ( 2 ) - \beta (1) \alpha (2)
\right] \left[ \alpha (3) \beta (4) - \beta (3) \alpha (4) \right] =
& 1 --- 2\cr
& 4 --- 3\cr
%
\label{chap4app-eqno23}
\end{eqnarray}
\begin{eqnarray}
\chi_{13,24} = \left( \alpha (1) \beta (3) - \beta (1) \alpha (3)
\right] \left[ \alpha (2) \beta (4) - \beta (2) \alpha (4) \right] =
& 1 {~~~~~} 2\cr
& 4 {~~~~~} 3\cr
%
\label{chap4app-eqno24}
\end{eqnarray}
and
\begin{eqnarray}
\chi_{14,23} = \left[ \alpha (1) \beta (4) - \beta (1) \alpha (4)
\right] \left[ \alpha (2) \beta (3) - \beta (2) \alpha (3) \right] =
& 1 {~~~~~} 2\cr
& 4 {~~~~~} 3\cr
%
\label{chap4app-eqno25}
\end{eqnarray}
These functions are denoted by diagrams in which the electrons are
spread in sequence around the periphery of a circle and lines are
drawn connecting singlet paired electrons, as shown in
(\ref{chap4app-eqno23}), (\ref{chap4app-eqno24}), and
(\ref{chap4app-eqno25}). Unfortunately, the functions in this set are
not linearly independent. For example,
\begin{equation}
\chi_{12,34} + \chi_{14,23} = \chi_{13,24} .
\end{equation}
However, Rumer showed that if diagrams with crossed line, as in
(\ref{chap4app-eqno24}), are eliminated, then the remaining spin
eigenfunctions are linearly independent. For example, the valence
bond (VB), spin eigenfunctions for a six-electron single are
%% RPM something goes here
That is, there are five linearly independent spin functions, just as
indicated in Figure \ref{fig4-02}
These spin eigenfunctions are not orthogonal. For example,
\begin{equation}
\langle \chi_{12,34} | \chi_{14,23} \rangle = - 1
\end{equation}
note that these functions are not normalized. However, they are easy to
use in buiIding up the type of many-electron wavefunctions referred to as
valence bond wavefunctions. For this reason, the spin eigenfunction of type
(\ref{chap4app-eqno22}) are referred to as valence bond spin eigenfunctions.
For cases with $S \not= 0$, the valence bond spin eigenfunction are
obtained by starting with the single valence bond spin functions for
an $N + 2S$ electron system and deleting the last $2S$ electrons, and then,
retaining the cases having $2S$ unpaired orbitals. For example, the valence
bond spin functions for $N=3$ and $S= 1/2$ are
\begin{equation}
\chi_{12,3} = {1 \atop ~~} ~~~~~ {2 \atop {\cdot 3}} = \left(
\alpha \beta - \beta \alpha \right) \alpha
\end{equation}
and
\begin{equation}
\chi_{23,1} = {{1\cdot} \atop ~~} {~~~~~} {2 \atop 3} =
\alpha \left( \alpha \beta - \beta \alpha \right)
\end{equation}
obtained from (\ref{chap4app-eqno23}) and (\ref{chap4app-eqno25}),
respectively. As another example, to obtain the valence bond spin
functions for a four-electron triplet, we start with the $S = 0$
functions for $N = 6$ of (\ref{chap4app-eqno26}), and delete electrons
five and six. This leads to three cases with two unpaired electrons
\begin{equation}
\chi_{23,1,4} = {{\d 1} \atop {\dot 4}} {~~~~~} {2 \atop 3} = \alpha
\alpha \beta \alpha - \alpha \beta \alpha \alpha
\end{equation}
\begin{equation}
\chi_{12,3,4} = {1 \atop {\dot 4}} {~~~~~} {2 \atop {\dot 3}} = \left(
\alpha \beta - \beta \alpha \right) \alpha \alpha
\end{equation}
\begin{equation}
\chi_{14,2,3} = {1 \atop 4} {~~~~~} {{\d 2} \atop {\dot 3}} = \alpha \alpha
\alpha \beta - \beta \alpha \alpha \alpha .
\end{equation}
\section{References}
\begin{enumerate}
\item A. Young, in Proc. London Math. Soc., vol. 34, page 196
(1931). A particularly lucid description of Young's work is given by
D. E. Rutherford, in Substitutional Analysis, Eidenburgh University
Press (1948).
\item T. Yamanuchi, in Proc. Phys. Math. Soc. Japan, vol. 18,
page 623 (1936).
\item See also M. Kotani, A. Amemiya, E. Ishiguro, and T. Kimur,
in Table of Molecular Intervals, Mazurzen Co., Ltd., Tokyo, Chapter
1 (1955).
\item From F. W. Bobrowicz, Ph.D. Thesis, California Institute
of Technology, pages 93 through 101 (1974).
\end{enumerate}