-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcreate_tfrecords.py
147 lines (120 loc) · 6.37 KB
/
create_tfrecords.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import argparse
import os
import random
import sys
import threading
import numpy as np
import tensorflow as tf
from datetime import datetime
from queue import Queue
from glob import glob
def _bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def _convert_to_example(image_buffer, mask_buffer, filename, mask_filename):
example = tf.train.Example(features=tf.train.Features(feature={
'image': _bytes_feature(image_buffer),
'mask': _bytes_feature(mask_buffer),
"filename": _bytes_feature(bytes(filename, encoding="UTF-8")),
"mask_filename": _bytes_feature(bytes(mask_filename, encoding="UTF-8"))
}))
return example
def _process_image_files_batch(thread_index, batch_data, shards, total_shards, mask_dir, mask_suffix, output_dir,
output_name, error_queue):
batch_size = len(batch_data)
batch_per_shard = batch_size // len(shards)
counter = 0
error_counter = 0
for s in range(len(shards)):
shard = shards[s]
output_filename = '%s-%.5d-of-%.5d' % (output_name, shard, total_shards)
output_file = os.path.join(output_dir, output_filename)
writer = tf.python_io.TFRecordWriter(output_file)
shard_counter = 0
shard_range = (s * batch_per_shard, min(batch_per_shard, batch_size - (s * batch_per_shard)))
files_in_shard = np.arange(shard_range[0], shard_range[1], dtype=int)
for i in files_in_shard:
filename = data[i]
mask_filename = os.path.join(mask_dir,
os.path.splitext(os.path.split(filename)[-1])[0] + mask_suffix)
try:
image_buffer = tf.gfile.FastGFile(filename, 'rb').read()
mask_buffer = tf.gfile.FastGFile(mask_filename, 'rb').read()
example = _convert_to_example(image_buffer, mask_buffer, filename, mask_filename)
writer.write(example.SerializeToString())
shard_counter += 1
counter += 1
except StopIteration as e:
error_counter += 1
error_msg = repr(e)
error_queue.put(error_msg)
print('%s [thread %d]: Wrote %d images to %s, with %d errors.' %
(datetime.now(), thread_index, shard_counter, output_file, error_counter))
sys.stdout.flush()
print('%s [thread %d]: Wrote %d images to %d shards, with %d errors.' %
(datetime.now(), thread_index, counter, len(shards), error_counter))
sys.stdout.flush()
def create(data, mask_dir, mask_suffix, output_name, output_dir, num_shards, num_threads):
num_data_per_thread = len(data) // num_threads
num_shard_per_thread = num_shards // num_threads
batch_data_ranges = [(i * num_data_per_thread, min(num_data_per_thread, len(data) - i * num_data_per_thread))
for i in range(num_threads)]
coord = tf.train.Coordinator()
error_queue = Queue()
threads = []
for thread_index in range(1, num_threads + 1):
batch_ranges = batch_data_ranges[thread_index - 1]
batch_data = data[batch_ranges[0]:batch_ranges[1]]
shards = [thread_index + (thread_index - 1) * (num_shard_per_thread - 1) + shard
for shard in range(num_shard_per_thread)]
args = (thread_index, batch_data, shards, num_shards, mask_dir, mask_suffix, output_name, output_dir,
error_queue)
t = threading.Thread(target=_process_image_files_batch, args=args)
t.start()
threads.append(t)
coord.join(threads)
errors = []
while not error_queue.empty():
errors.append(error_queue.get())
print('%d examples failed.' % (len(errors),))
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--image_dir', help='Directory of the images.', type=str, required=True)
parser.add_argument('--mask_dir', help='Directory of the masks.', type=str, required=True)
parser.add_argument('--image_suffix', help='Suffix of the images.', type=str, default=".jpg")
parser.add_argument('--mask_suffix', help='Suffix of the masks.', type=str, default="_mask.jpg")
parser.add_argument('--train_size', help='Ratio of training samples.', type=float, required=True)
parser.add_argument('--validation_size', help='Ratio of validation samples.', type=float, required=True)
parser.add_argument('--output_dir', help='Directory for the tfrecords.', type=str, default="./")
parser.add_argument('--shards', help='Number of shards to make.', type=int, default=1)
parser.add_argument('--threads', help='Number of threads to use.', type=int, default=1)
parser.add_argument('--shuffle', help='Shuffle the samples.', action='store_true', default=True)
parsed_args = parser.parse_args()
return parsed_args
def assert_args(args):
assert os.path.exists(args.image_dir), "Images directory does not exist"
assert os.path.exists(args.mask_dir), "Mask directory does not exist"
assert args.train_size + args.validation_size <= 1, "Train ratio + validation ratio must be <= 1"
assert args.train_size > 0, "Train ratio must be > 0"
assert args.validation_size >= 0, "Validation ratio must be >= 0"
assert args.shards > 0, "Number of shards must be > 0"
assert args.threads > 0, "Number of threads must be > 0"
assert args.shards % args.threads == 0
assert len(glob(args.image_dir + "/*" + args.image_suffix)) == \
len(glob(args.mask_dir + "/*" + args.mask_suffix)), "Number of images and masks does not match"
if __name__ == '__main__':
args = parse_args()
assert_args(args)
data = glob(os.path.join(args.image_dir, "*" + args.image_suffix))
if args.shuffle:
random.shuffle(data)
num_data = len(data)
num_train = round(num_data * args.train_size)
num_validation = round(num_data * args.validation_size)
training = data[:num_train]
create(training, args.mask_dir, args.mask_suffix, args.output_dir, "train", args.shards, args.threads)
if args.validation_size > 0:
validation = data[num_train:num_train + num_validation]
create(validation, args.mask_dir, args.mask_suffix, args.output_dir, "val", args.shards, args.threads)
if args.train_size + args.validation_size < 1:
test = data[num_train + num_validation:]
create(test, args.mask_dir, args.mask_suffix, args.output_dir, "test", args.shards, args.threads)