指数型分布族の一般形
\begin{align*}
p(\x|\η) = h(\x) g(\η) exp\{ \η^T \u(\x) \}
\end{align*}
多変量ガウス分布
\begin{align*}
\N(\x|\μ,\Σ)
= & \f{1}{(2π)D/2} \f{1}{|\Σ|1/2}
exp\l\{ -\f{1}{2} (\x - \μ)^T \Σ-1 (\x - \μ) \r\}
= & \f{1}{(2π)D/2} \f{1}{|\Σ|1/2}
exp\l\{ -\f{1}{2} ( \x^T \Σ-1 \x - \x^T \Σ-1 \μ
- \μ^T \Σ-1 \x + \μ^T \Σ-1 \μ) \r\}
= & \f{1}{(2π)D/2} \f{1}{|\Σ|1/2}
exp\l\{ - \f{1}{2} \x^T \Σ-1 \x + \μ^T \Σ-1 \x - \f{1}{2} \μ^T \Σ-1 \μ \r\}
\end{align*}
\begin{align*}
\η = & \l( \begin{array}{c}
\μ^T
-\f{1}{2} \Σ-1 \
\end{array} \r) \
\u(\x) = & \l( \begin{array}{c}
\Σ-1 \x \
\Σ \x^T \Σ-1 \x \
\end{array} \r) \
h(\x) = & \f{1}{(2π)D/2} \
g(\η) = & -2 |\η_2|1/2 exp\l( \η_1 \η_2 \η_1^T \r)
\end{align*}