-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
221 lines (178 loc) · 9.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
from __future__ import absolute_import, division, print_function, unicode_literals
import os
import time
import argparse
import json
import torch
from tensorboardX import SummaryWriter
from torch.utils.data import DistributedSampler, DataLoader
from env import AttrDict, build_env
from meldataset import MelDataset, mel_spectrogram
from distributed import init_distributed, apply_gradient_allreduce, reduce_tensor
from models import Generator, MultiScaleDiscriminator, feature_loss, generator_loss, discriminator_loss
from utils import plot_spectrogram
h = None
device = None
def load_checkpoint(checkpoint_path, model, optimizer):
assert os.path.isfile(checkpoint_path)
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
iteration = checkpoint_dict['iteration']
optimizer.load_state_dict(checkpoint_dict['optimizer'])
model.load_state_dict(checkpoint_dict['model'])
print("Loaded checkpoint '{}' (iteration {})" .format(
checkpoint_path, iteration))
return model, optimizer, iteration
def save_checkpoint(model, optimizer, learning_rate, steps, filepath):
print("Saving model and optimizer state at iteration {} to {}".format(
steps, filepath))
torch.save({'model': model.state_dict(),
'iteration': steps,
'optimizer': optimizer.state_dict(),
'learning_rate': learning_rate}, filepath)
def fit(a, epochs):
if h.num_gpus > 1:
init_distributed(a.rank, h.num_gpus, a.group_name, h.dist_config['dist_backend'], h.dist_config['dist_url'])
generator = Generator().to(device)
discriminator = MultiScaleDiscriminator().to(device)
if h.num_gpus > 1:
generator = apply_gradient_allreduce(generator)
discriminator = apply_gradient_allreduce(discriminator)
g_optim = torch.optim.Adam(generator.parameters(), h.learning_rate, betas=[h.adam_b1, h.adam_b2])
d_optim = torch.optim.Adam(discriminator.parameters(), h.learning_rate, betas=[h.adam_b1, h.adam_b2])
steps = 0
if a.cp_g != "" and a.cp_d != "":
generator, g_optim, steps = load_checkpoint(a.cp_g, generator, g_optim)
discriminator, d_optim, steps = load_checkpoint(a.cp_d, discriminator, d_optim)
steps += 1
with open(a.input_train_metafile, 'r', encoding='utf-8') as fi:
training_files = [os.path.join(a.input_wavs_dir, x.split('|')[0] + '.wav')
for x in fi.read().split('\n') if len(x) > 0]
with open(a.input_valid_metafile, 'r', encoding='utf-8') as fi:
validation_files = [os.path.join(a.input_wavs_dir, x.split('|')[0] + '.wav')
for x in fi.read().split('\n') if len(x) > 0]
trainset = MelDataset(training_files, h.segment_size, h.n_fft, h.num_mels,
h.hop_size, h.win_size, h.sampling_rate, h.fmin, h.fmax)
train_sampler = DistributedSampler(trainset) if h.num_gpus > 1 else None
train_loader = DataLoader(trainset, num_workers=h.num_workers, shuffle=False,
sampler=train_sampler,
batch_size=h.batch_size,
pin_memory=False,
drop_last=True)
if a.rank == 0:
validset = MelDataset(validation_files, h.segment_size, h.n_fft, h.num_mels,
h.hop_size, h.win_size, h.sampling_rate, h.fmin, h.fmax, False, False, n_cache_reuse=0)
valid_loader = DataLoader(validset, num_workers=1, shuffle=False,
sampler=None,
batch_size=1,
pin_memory=False,
drop_last=True)
if a.rank == 0:
os.makedirs(a.cps, exist_ok=True)
print("checkpoints directory : ", a.cps)
sw = SummaryWriter(os.path.join(a.cps, 'logs'))
epoch_offset = max(0, int(steps / len(train_loader)))
generator.train()
discriminator.train()
for epoch in range(epoch_offset, epochs):
start = time.time()
if a.rank == 0:
print("Epoch: {}".format(epoch))
for i, batch in enumerate(train_loader):
start_b = time.time()
x, y, _ = batch
x = torch.autograd.Variable(x.to(device))
y = torch.autograd.Variable(y.to(device))
y = y.unsqueeze(1)
g_optim.zero_grad()
y_ghat = generator(x)
y_dhat_r, y_dhat_g, fmap_r, fmap_g = discriminator(y, y_ghat)
loss_fm = feature_loss(fmap_r, fmap_g)
loss_gen = generator_loss(y_dhat_g) + loss_fm
if h.num_gpus > 1:
reduced_loss_gen = reduce_tensor(loss_gen.data, h.num_gpus).item()
else:
reduced_loss_gen = loss_gen.item()
loss_gen.backward()
g_optim.step()
d_optim.zero_grad()
y_ghat = y_ghat.detach()
y_dhat_r, y_dhat_g, _, _ = discriminator(y, y_ghat)
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_dhat_r, y_dhat_g)
if h.num_gpus > 1:
reduced_loss_disc = reduce_tensor(loss_disc.data, h.num_gpus).item()
else:
reduced_loss_disc = loss_disc.item()
loss_disc.backward()
d_optim.step()
if a.rank == 0 and steps % a.stdout_interval == 0:
print('Steps : {:d}, Gen Loss : {:4.3f}, Disc Loss : {:4.3f}, s/b : {:4.3f}'.
format(steps, reduced_loss_gen, reduced_loss_disc, time.time() - start_b))
if a.rank == 0 and steps % a.checkpoint_interval == 0 and steps != 0:
checkpoint_path = "{}/g_{:08d}".format(a.cps, steps)
save_checkpoint(generator, g_optim, h.learning_rate, steps, checkpoint_path)
checkpoint_path = "{}/d_{:08d}".format(a.cps, steps)
save_checkpoint(discriminator, d_optim, h.learning_rate, steps, checkpoint_path)
if a.rank == 0 and steps % a.summary_interval == 0:
sw.add_scalar("training/gen_loss", reduced_loss_gen, steps)
sw.add_scalar("training/disc_loss", reduced_loss_disc, steps)
for i, (r, g) in enumerate(zip(losses_disc_r, losses_disc_g)):
sw.add_scalar("training/disc{:d}_loss_r".format(i+1), r, steps)
sw.add_scalar("training/disc{:d}_loss_g".format(i+1), g, steps)
for i, (r, g) in enumerate(zip(y_dhat_r, y_dhat_g)):
sw.add_histogram("training/disc{:d}_r_output".format(i+1), r, steps)
sw.add_histogram("training/disc{:d}_g_output".format(i+1), g, steps)
sw.add_histogram("training/gen_output", y_ghat, steps)
sw.add_audio('training_gt/y', y[0], steps, h.sampling_rate)
sw.add_audio('training_predicted/y_hat', y_ghat[0], steps, h.sampling_rate)
if a.rank == 0 and steps % a.validation_interval == 0: # and steps != 0:
for i, batch in enumerate(valid_loader):
x, y, _ = batch
y_ghat = generator(x.to(device))
sw.add_audio('validation_gt/y_{}'.format(i), y[0], steps, h.sampling_rate)
sw.add_audio('validation_predicted/y_hat_{}'.format(i), y_ghat[0], steps, h.sampling_rate)
# print(plot_spectrogram(x[i]))
sw.add_figure('validation_gt/y_spec_{}'.format(i), plot_spectrogram(x[0]), steps)
y_hat_spec = mel_spectrogram(y_ghat.detach().cpu().numpy()[0][0], h.n_fft, h.num_mels, h.sampling_rate, h.hop_size, h.win_size,
h.fmin, h.fmax, center=False)
sw.add_figure('validation_predicted/y_hat_spec_{}'.format(i), plot_spectrogram(y_hat_spec), steps)
if i == 4:
break
steps += 1
if a.rank == 0:
print('Time taken for epoch {} is {} sec\n'.format(epoch + 1, int(time.time()-start)))
def main():
print('Initializing Training Process..')
parser = argparse.ArgumentParser()
parser.add_argument('--rank', default=0, type=int)
parser.add_argument('--group_name', default=None)
parser.add_argument('--input_wavs_dir', default='data/LJSpeech-1.1/wavs')
parser.add_argument('--input_train_metafile', default='data/LJSpeech-1.1/metadata_ljspeech.csv')
parser.add_argument('--input_valid_metafile', default='data/LJSpeech-1.1/metadata_test_ljspeech.csv')
parser.add_argument('--inference', default=False, action='store_true')
parser.add_argument('--cps', default='cp_melgan')
parser.add_argument('--cp_g', default='') # ex) cp_mgt_01/g_100.pth
parser.add_argument('--cp_d', default='') # ex) cp_mgt_01/d_100.pth
parser.add_argument('--config', default='hparams.json')
parser.add_argument('--training_epochs', default=5000, type=int)
parser.add_argument('--stdout_interval', default=1, type=int)
parser.add_argument('--checkpoint_interval', default=5000, type=int)
parser.add_argument('--summary_interval', default=100, type=int)
parser.add_argument('--validation_interval', default=1000, type=int)
a = parser.parse_args()
with open(a.config) as f:
data = f.read()
global h
json_config = json.loads(data)
h = AttrDict(json_config)
build_env(a.config, 'config.json', a.cps)
torch.manual_seed(h.seed)
global device
if torch.cuda.is_available():
torch.cuda.manual_seed(h.seed)
device = torch.device('cuda')
h.num_gpus = torch.cuda.device_count()
else:
device = torch.device('cpu')
fit(a, a.training_epochs)
if __name__ == '__main__':
main()