This repository has been archived by the owner on Jan 15, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 538
/
setup.py
170 lines (159 loc) · 4.76 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#!/usr/bin/env python
from datetime import datetime
import io
import os
import re
import shutil
import sys
import warnings
from setuptools import setup, find_packages
def read(*names, **kwargs):
with io.open(os.path.join(os.path.dirname(__file__), *names),
encoding=kwargs.get("encoding", "utf8")) as fp:
return fp.read()
def find_version(*file_paths):
version_file = read(*file_paths)
version_match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]", version_file, re.M)
if version_match:
return version_match.group(1)
raise RuntimeError("Unable to find version string.")
VERSION = find_version('src', 'gluonnlp', '__init__.py')
if VERSION.endswith('dev'):
VERSION = VERSION + datetime.today().strftime('%Y%m%d')
requirements = [
'boto3',
'numpy<1.20.0',
'sacremoses>=0.0.38,<0.0.44',
'yacs>=0.1.6',
'sacrebleu',
'flake8',
'packaging',
'regex',
'contextvars',
'pyarrow',
'sentencepiece==0.1.95',
'protobuf',
'pandas',
'tokenizers==0.9.4',
'dataclasses;python_version<"3.7"', # Dataclass for python <= 3.6
'pickle5;python_version<"3.8"', # pickle protocol 5 for python <= 3.8
'click>=7.0', # Dependency of youtokentome
'youtokentome>=1.0.6',
'fasttext>=0.9.1,!=0.9.2' # Fix to 0.9.1 due to https://github.com/facebookresearch/fastText/issues/1052
]
extensions = []
cmdclass = {}
try:
import torch
from torch.utils.cpp_extension import CUDA_HOME, BuildExtension, CUDAExtension
force_cuda = os.getenv("FORCE_TORCH_CUDA", "0") == "1"
if (torch.cuda.is_available() and CUDA_HOME is not None) or force_cuda:
extensions.extend([
CUDAExtension(
name="gluonnlp.torch.fused_optimizers",
include_dirs=[
os.path.join(os.path.dirname(os.path.abspath(__file__)),
"src/gluonnlp/torch/clib")
],
sources=[
"src/gluonnlp/torch/clib/amp_C_frontend.cpp",
"src/gluonnlp/torch/clib/multi_tensor_lans.cu",
"src/gluonnlp/torch/clib/multi_tensor_l2norm_kernel.cu"
],
extra_compile_args={
"cxx": ["-O3"],
"nvcc": ["-O3", "--use_fast_math"]
},
)
])
cmdclass["build_ext"] = BuildExtension
else:
warnings.warn("Cannot install fused cuda optimizers.")
except ImportError:
pass
setup(
# Metadata
name='gluonnlp',
version=VERSION,
python_requires='>=3.6',
author='GluonNLP Toolkit Contributors',
author_email='[email protected]',
description='GluonNLP Toolkit',
long_description_content_type='text/markdown',
license='Apache-2.0',
# Package info
packages=find_packages(where="src", exclude=(
'tests',
'scripts',
)),
package_dir={"": "src"},
package_data={
'': [
os.path.join('models', 'model_zoo_checksums', '*.txt'),
os.path.join('cli', 'data', 'url_checksums', '*.txt'),
os.path.join('cli', 'data', 'url_checksums', 'mirror', '*.json')
]
},
zip_safe=True,
include_package_data=True,
ext_modules=extensions,
cmdclass=cmdclass,
install_requires=requirements,
extras_require={
'extras': [
'tqdm',
'jieba',
'subword_nmt',
'spacy>=2.3.0,<3',
'langid==1.1.6',
'nltk',
'h5py>=2.10',
'scipy',
'wikiextractor>=3.0.4,<4',
'tqdm',
'py3nvml',
'smart_open',
],
'dev': [
'pytest',
'pytest-env',
'pytest-mock',
'pylint',
'pylint_quotes',
'flake8',
'recommonmark',
'sphinx>=1.5.5',
'sphinx-gallery',
'sphinx_rtd_theme',
'mxtheme',
'sphinx-autodoc-typehints',
'nbsphinx',
'flaky',
],
'web': [
'ipython',
'sphinx>=1.5.5',
'sphinx-gallery',
'nbsphinx',
'sphinx_rtd_theme',
'mxtheme',
'sphinx-autodoc-typehints',
'matplotlib',
'Image',
'recommonmark',
'nbformat',
'notedown',
'jupyter_client',
'ipykernel',
'matplotlib',
'termcolor',
],
},
entry_points={
'console_scripts': [
'nlp_data = gluonnlp.cli.data.__main__:cli_main',
'nlp_process = gluonnlp.cli.process.__main__:cli_main',
'gluon_average_checkpoint = gluonnlp.cli.average_checkpoint:cli_main'
],
},
)