-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathimage_transforms.py
149 lines (117 loc) · 4.88 KB
/
image_transforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# -*- coding: utf-8 -*-
'''
@Author : Corley Tang
@Contact : [email protected]
@Github : https://github.com/corleytd
@Time : 2022-11-02 17:47
@Project : PyTorchBasic-image_transforms
'''
import os
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
from torchvision import transforms
from custom_transforms import SaltPepperNoise
from tools.common_tools import set_seed, transform_invert
from tools.datasets import RMBDataset
set_seed() # 设置随机种子
# 设置超参数
MAX_EPOCH = 6
BATCH_SIZE = 16
# 1.数据处理
split_path = '../../data/RMB_split'
train_path = os.path.join(split_path, 'train')
valid_path = os.path.join(split_path, 'valid')
norm_mean = [0.485, 0.456, 0.406]
norm_std = [0.229, 0.224, 0.225]
train_transform = transforms.Compose([
transforms.Resize((224, 224)),
# 1.CenterCrop
# transforms.CenterCrop(512),
# 2.RandomCrop
# transforms.RandomCrop(224, padding=16),
# transforms.RandomCrop(224, padding=(16, 64)),
# transforms.RandomCrop(224, padding=16, fill=(12, 76, 125)),
# transforms.RandomCrop(512, pad_if_needed=True),
# transforms.RandomCrop(224, padding=64, padding_mode='edge'),
# transforms.RandomCrop(224, padding=64, padding_mode='reflect'),
# transforms.RandomCrop(1024, padding=1024, padding_mode='symmetric'),
# 3.RandomResizedCrop
# transforms.RandomResizedCrop(224),
# transforms.RandomResizedCrop(224, scale=(0.5, 0.51)),
# 4.FiveCrop
# transforms.FiveCrop(112),
# transforms.Lambda(lambda crops: torch.stack([transforms.ToTensor()(crop) for crop in crops])),
# 5.TenCrop
# transforms.TenCrop(112, vertical_flip=True),
# transforms.TenCrop(112, vertical_flip=False),
# transforms.Lambda(lambda crops: torch.stack([transforms.ToTensor()(crop) for crop in crops])),
# 6.HorizontalFlip
# transforms.RandomHorizontalFlip(1),
# 7.VerticalFlip
# transforms.RandomVerticalFlip(0.6),
# 8.RandomRotation
# transforms.RandomRotation(90),
# transforms.RandomRotation(90, expand=True),
# transforms.RandomRotation(90, center=(0, 0)),
# transforms.RandomRotation(90, center=(0, 0), expand=True),
# 9.Pad
# transforms.Pad(padding=32, fill=(152, 77, 41), padding_mode='constant'),
# transforms.Pad(padding=(8, 64), fill=(152, 77, 41), padding_mode='constant'),
# transforms.Pad(padding=(8, 16, 32, 64), fill=(152, 77, 41), padding_mode='constant'),
# transforms.Pad(padding=(8, 16, 32, 64), fill=(152, 77, 41), padding_mode='symmetric'),
# 10.ColorJitter
# transforms.ColorJitter(brightness=0.5),
# transforms.ColorJitter(contrast=0.5),
# transforms.ColorJitter(saturation=0.5),
# transforms.ColorJitter(hue=0.3),
# 11.GrayScale
# transforms.Grayscale(num_output_channels=3),
# 12.Affine
# transforms.RandomAffine(degrees=30),
# transforms.RandomAffine(degrees=0, translate=(0.2, 0.3), fillcolor=(16, 92, 251)),
# transforms.RandomAffine(degrees=0, scale=(0.3, 0.7)),
# transforms.RandomAffine(degrees=0, shear=(0, 30, 0, 45)),
# transforms.RandomAffine(degrees=0, shear=30, fill=(225, 6, 2)),
# 13.RandomErasing
# transforms.ToTensor(),
# transforms.RandomErasing(0.7, scale=(0.02, 0.33), ratio=(0.3, 3.3), value=(251/255, 114/255, 153/255)),
# transforms.RandomErasing(0.7, scale=(0.02, 0.33), ratio=(0.3, 3.3), value='random'),
# 14.RandomChoice
# transforms.RandomChoice([transforms.RandomVerticalFlip(0.8), transforms.RandomHorizontalFlip(0.8)]),
# 15.RandomApply
# transforms.RandomApply([
# transforms.RandomAffine(degrees=0, shear=45, fill=(78, 110, 242)),
# transforms.Grayscale(num_output_channels=3)
# ], 0.7),
# 16.RandomOrder
# transforms.RandomOrder([
# transforms.RandomRotation(30),
# transforms.Pad(padding=32),
# transforms.RandomAffine(degrees=0, translate=(0.1, 0.3), scale=(0.8, 1.2))
# ]),
# 17.SaltPepperNoise
SaltPepperNoise(0.9, p=0.5),
transforms.ToTensor(),
transforms.Normalize(norm_mean, norm_std)
])
# 创建dataset
train_data = RMBDataset(train_path, train_transform)
# 构建DataLoader
train_loader = DataLoader(train_data, batch_size=BATCH_SIZE, shuffle=True)
for epoch in range(1, MAX_EPOCH + 1):
for iteration, data in enumerate(train_loader, 1):
inputs, labels = data # inputs: (B, C, H, W)
img_tensor = inputs[0, ...] # img_tensor: (C, H, W)
img = transform_invert(img_tensor, train_transform)
plt.imshow(img)
plt.show()
plt.pause(0.5)
plt.close()
# ncrops = inputs.shape[1] # inputs: (B, bcrops, C, H, W)
# for i in range(ncrops):
# img_tensor = inputs[0, i, ...] # img_tensor: (C, H, W)
# img = transform_invert(img_tensor, train_transform)
# plt.imshow(img)
# plt.show()
# plt.pause(0.5)
# plt.close()