-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_lenet.py
174 lines (135 loc) · 4.7 KB
/
train_lenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# -*- coding: utf-8 -*-
'''
@Author : Corley Tang
@Contact : [email protected]
@Github : https://github.com/corleytd
@Time : 2022-11-01 11:27
@Project : PyTorchBasic-train_lenet
'''
import os
import matplotlib.pyplot as plt
import numpy as np
import torch
from torch import nn
from torch import optim
from torch.utils.data import DataLoader
from torchvision import transforms
from models.lenet import LeNet
from tools.common_tools import set_seed
from tools.datasets import RMBDataset
set_seed() # 设置随机种子
# 设置超参数
MAX_EPOCH = 6
BATCH_SIZE = 16
lr = 0.01
log_interval = 5
val_interval = 2
# 1.数据处理
split_path = '../../data/RMB_split'
train_path = os.path.join(split_path, 'train')
valid_path = os.path.join(split_path, 'valid')
norm_mean = [0.485, 0.456, 0.406]
norm_std = [0.229, 0.224, 0.225]
train_transform = transforms.Compose([
transforms.Resize((32, 32)),
transforms.RandomCrop(32, padding=4),
transforms.ToTensor(),
transforms.Normalize(norm_mean, norm_std)
])
valid_transform = transforms.Compose([
transforms.Resize((32, 32)),
transforms.ToTensor(),
transforms.Normalize(norm_mean, norm_std)
])
# 创建dataset
train_data = RMBDataset(train_path, train_transform)
valid_data = RMBDataset(valid_path, valid_transform)
# 构建DataLoader
train_loader = DataLoader(train_data, batch_size=BATCH_SIZE, shuffle=True)
valid_loader = DataLoader(valid_data, batch_size=BATCH_SIZE * 2)
# 2.搭建模型
lenet = LeNet(classes=2)
lenet.initialize_weights()
# 3.定义损失函数
criterion = nn.CrossEntropyLoss()
# 4.定义优化器
optimizer = optim.SGD(lenet.parameters(), lr=lr, momentum=0.9)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)
# 5.训练
train_curve = []
valid_curve = []
for epoch in range(1, MAX_EPOCH + 1):
avg_loss = 0
correct, total = 0, 0
lenet.train()
for iteration, data in enumerate(train_loader, 1):
# 前向传播
inputs, labels = data
outputs = lenet(inputs)
# 计算损失
loss = criterion(outputs, labels)
# 反向传播
loss.backward()
# 更新参数
optimizer.step()
# 梯度清零
optimizer.zero_grad()
# 统计结果
_, preds = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (preds == labels).squeeze().sum().item()
# 输出训练信息
avg_loss += loss.item()
train_curve.append(loss.item())
if iteration % log_interval == 0:
avg_loss /= log_interval
print(
f'Train: Epoch: {epoch:0>3}/{MAX_EPOCH:0>3} Iteration: {iteration:0>3}/{len(train_loader):0>3} Loss: {avg_loss:.4f} Acc: {correct / total:.2%}')
avg_loss = 0
# 更新学习率
scheduler.step()
# 验证模型
if epoch % val_interval == 0:
val_correct, val_total, val_loss = 0, 0, 0
lenet.eval()
with torch.no_grad():
for iteration, data in enumerate(valid_loader, 1):
inputs, labels = data
outputs = lenet(inputs)
loss = criterion(outputs, labels)
_, preds = torch.max(outputs, 1)
val_total += labels.size(0)
val_correct += (preds == labels).squeeze().sum().item()
val_loss += loss.item()
avg_val_loss = val_loss / len(valid_loader)
valid_curve.append(avg_val_loss)
print(f'Valid: Epoch: {epoch:0>3}/{MAX_EPOCH:0>3} Loss: {avg_loss:.4f} Acc: {val_correct / val_total:.2%}')
# 画图
train_res_x = range(len(train_curve))
train_res_y = train_curve
train_iters = len(train_loader)
valid_res_x = np.arange(1,
len(valid_curve) + 1) * train_iters * val_interval - 1 # 由于valid中记录的是epoch loss,需要对记录点进行转换到iterations
valid_res_y = valid_curve
plt.plot(train_res_x, train_res_y, label='Train')
plt.plot(valid_res_x, valid_res_y, label='Valid')
plt.legend(loc='upper right')
plt.xlabel('Iteration')
plt.ylabel('Loss')
plt.show()
# 推理
test_path = os.path.join(split_path, 'test')
test_data = RMBDataset(test_path, valid_transform)
test_loader = DataLoader(test_data, batch_size=BATCH_SIZE * 2)
test_correct, test_total, test_loss = 0, 0, 0
for iteration, data in enumerate(test_loader):
# 前向
inputs, labels = data
outputs = lenet(inputs)
loss = criterion(outputs, labels)
_, preds = torch.max(outputs.data, 1)
test_total += labels.size(0)
test_correct += (preds == labels).squeeze().sum().item()
test_loss += loss.item()
avg_test_loss = test_loss / len(test_loader)
print(f'Test: Loss: {avg_test_loss:.4f} Acc: {test_correct / test_total:.2%}')