-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcommon_errors.py
168 lines (127 loc) · 5.12 KB
/
common_errors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# -*- coding: utf-8 -*-
'''
@Author : Corley Tang
@Contact : [email protected]
@Github : https://github.com/corleytd
@Time : 2022-12-21 19:02
@Project : PyTorchBasic-common_errors
'''
import random
import torch
from torch import nn
from torch.utils.data import DataLoader, Dataset
from torchvision.transforms import transforms
from models.lenet import LeNet
from tools.datasets import RMBDataset
flag = 7
# 1.ValueError: num_samples=0
if flag == 0:
# train_dir = '../../data/RMB_split' # ValueError: num_samples should be a positive integer value, but got num_samples=0
train_dir = '../../data/RMB_split/train'
train_data = RMBDataset(train_dir)
train_loader = DataLoader(dataset=train_data, batch_size=16, shuffle=True)
# 2.TypeError
if flag == 1:
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.FiveCrop(200),
transforms.Lambda(lambda crops: torch.stack([transforms.ToTensor()(crop) for crop in crops])),
# transforms.ToTensor() # TypeError: pic should be PIL Image or ndarray. Got <class 'torch.Tensor'>
])
train_dir = '../../data/RMB_split/train'
train_data = RMBDataset(train_dir, transform=transform)
loader = DataLoader(dataset=train_data, batch_size=16, shuffle=True)
data, label = next(iter(loader))
# 3.RuntimeError
if flag == 2:
class FooDataset(Dataset):
def __init__(self, num_data, data_dir=None, transform=None):
self.num_data = num_data
self.data_dir = data_dir
self.transform = transform
def __getitem__(self, item):
# size = random.randint(60, 64) # RuntimeError: stack expects each tensor to be equal size, but got [3, 60, 60] at entry 0 and [3, 62, 62] at entry 2
size = random.randint(64, 64)
fake_data = torch.randn(3, size, size)
fake_label = torch.randint(0, 10, size=(1,))
return fake_data, fake_label
def __len__(self):
return self.num_data
dataset = FooDataset(10)
data_loader = DataLoader(dataset=dataset, batch_size=4)
data, labels = next(iter(data_loader))
# 4.RuntimeError
if flag == 3:
class FooDataset(Dataset):
def __init__(self, num_data, shape, data_dir=None, transform=None):
self.num_data = num_data
self.shape = shape
self.data_dir = data_dir
self.transform = transform
def __getitem__(self, item):
fake_data = torch.randn(self.shape)
fake_label = torch.randint(0, 10, size=(1,))
if self.transform:
fake_data = self.transform(fake_data)
return fake_data, fake_label
def __len__(self):
return self.num_data
# 1.构造数据
# 1, 32: RuntimeError: Given groups=1, weight of size [6, 3, 5, 5], expected input[16, 1, 32, 32] to have 3 channels, but got 1 channels instead
# 3, 36: RuntimeError: mat1 and mat2 shapes cannot be multiplied (16x576 and 400x120)
channel, img_size = 3, 32
train_data = FooDataset(32, (channel, img_size, img_size))
data_loader = DataLoader(train_data, batch_size=16, shuffle=True)
# 2.定义模型
model = LeNet(classes=2)
# 3.前向传播
batch_data, batch_labels = next(iter(data_loader))
output = model(batch_data)
# 5.AttributeError
if flag == 4:
class FooNet(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(3, 3, bias=False)
self.conv = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(5)
def forward(self, x):
return self.linear(x)
model = FooNet()
torch.save(model, 'output/foonet.pkl')
for name, layer in model.named_modules():
print(name)
model = nn.DataParallel(model)
for name, layer in model.named_modules():
print(name)
# print(model.linear) # AttributeError: 'DataParallel' object has no attribute 'linear'
print(model.module.linear)
# 6.AttributeError
if flag == 5:
# model = torch.load('output/foonet.pkl') # AttributeError: Can't get attribute 'FooNet' on <module '__main__'
class FooNet(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(3, 3, bias=False)
self.conv = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(5)
def forward(self, x):
return self.linear(x)
model = torch.load('output/foonet.pkl')
print(model)
# 7.IndexError
if flag == 6:
inputs = torch.tensor([[1., 2], [1, 3], [1, 4]])
# target = torch.tensor([0, 1, 2]) # IndexError: Target 2 is out of bounds.
target = torch.tensor([0, 1, 1])
criterion = nn.CrossEntropyLoss()
loss = criterion(inputs, target)
# 8.
if flag == 7:
a = torch.tensor([1])
b = torch.tensor([2], device='cuda')
# y = a + b # RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!
a.to('cuda')
# y = a + b # RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!
a = a.to('cuda')
y = a + b