-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsrc.cpp
418 lines (374 loc) · 11.6 KB
/
src.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
/*
Author: Dosaru Daniel-Florin, Group 331CA
APD, Homework project number 3, University year 2017-2018
Compile:
mpic++ src.cpp -o filter -Wall
Run:
mpirun -np 12 filter topology1.in images.in statistics.out
or
mpirun -np 29 filter topology2.in images.in statistics.out
*/
#include<mpi.h>
#include<stdio.h>
#include<stdlib.h>
#include<string>
#include<iostream>
#include<fstream>
#include<sstream>
#include<vector>
#define LINE_MAX_LENGTH 1024
#define NR_TEST_TAG 0
#define ERROR_TAG 999
#define IMG_INFO_TAG 1001
#define SOBEL_TAG 1002
#define MEANR_TAG 1003
#define RESULT_TAG 1004
#define TERMINATION_TAG 1005
using namespace std;
int** my_alloc(int m, int n) {
int *continue_space = (int *) malloc (m*n*sizeof(int));
if (continue_space == NULL) {
fprintf(stderr, "Out of memory at continue_space");
}
int **my_space = (int **) calloc (m, sizeof(int *));
if (my_space == NULL) {
fprintf(stderr, "Out of memory at my_space");
}
for (int i = 0; i < m; ++i) {
my_space[i] = &(continue_space[n*i]);
}
return my_space;
}
int main(int argc, char * argv[]) {
int rank;
int nProcesses;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &nProcesses);
int * parent, *topo;
parent = (int *) malloc(nProcesses*sizeof(int));
if (parent == NULL) {
fprintf(stderr, "Out of memory at parent");
}
topo = (int *)malloc(nProcesses * sizeof(int));
if (topo == NULL) {
fprintf(stderr, "Out of memory at topo");
}
// stat[i] = number of pixel lines processed by node i
int * stat = (int *)malloc(nProcesses * sizeof(int));
if (stat == NULL) {
fprintf(stderr, "Out of memory at stat");
}
// initial values for topology array and parent array
for (int i = 0; i < nProcesses; i++){
topo[i] = 0;
stat[i] = 0;
parent[i] = -1;
}
const char sep[2] = " ";
char *token;
// reading topology
FILE *f_topo = fopen(argv[1], "r");
int count = 0;
char line[LINE_MAX_LENGTH];
while (fgets(line, sizeof(line), f_topo) != NULL) {
if (count == rank) {
token = strtok(line, sep); // "rank: "
token = strtok(NULL, sep);
while( token != NULL ) {
int nr = atoi(token);
topo[nr] = 1;
token = strtok(NULL, sep);
}
break;
} else {
count++;
}
}
fclose(f_topo);
if (rank == 0) {
vector<int> kids;
for (int i = 0; i < nProcesses; ++i) {
if (topo[i] == 1) {
kids.push_back(i);
}
}
ifstream infile(argv[2]);
ofstream outfile(argv[3]);
int nr_tests = 0;
infile >> nr_tests;
for (int i = 0; i < (int)kids.size(); ++i) {
MPI_Send(&nr_tests, 1, MPI_INT, kids[i], NR_TEST_TAG, MPI_COMM_WORLD);
}
for (int k = 0; k < nr_tests; k++) {
printf("Next photo: %d\n", k+1);
string type, img_in, img_out, inputLine = "";
// Parsing pgm file
int i = 0, j = 0, H = 0, W = 0, maxValue, info_img[3];
stringstream ss;
infile >> type >> img_in >> img_out;
ifstream in_f_img(img_in.c_str());
FILE * out_f_img;
out_f_img = fopen (img_out.c_str(),"w");
getline(in_f_img, inputLine);
if(inputLine.compare("P2") != 0)
cerr << "Version error" << endl;
fprintf(out_f_img, "%s\n", inputLine.c_str());
getline(in_f_img, inputLine); // comment line
fprintf(out_f_img, "%s\n", inputLine.c_str());
ss << in_f_img.rdbuf();
ss >> W >> H;
fprintf(out_f_img, "%d %d\n", W, H);
ss >> maxValue;
fprintf(out_f_img, "%d\n", maxValue);
info_img[1] = W + 2; // number of columns of one line + two zeros
info_img[2] = maxValue;
for (int i = 0; i < (int)kids.size(); ++i) {
// last kid
if (i == (int)kids.size() - 1) {
info_img[0] = H / kids.size() + 2 + H % kids.size();
} else {
info_img[0] = H / kids.size() + 2;
}
MPI_Send(info_img, 3, MPI_INT, kids[i], IMG_INFO_TAG, MPI_COMM_WORLD);
}
int** m = my_alloc(H+2, W+2);
//read pixel values
printf("Reading image's number %d pixels... ", k+1);
for(i = 1; i < H+1; ++i) {
for (j = 1; j < W+1; ++j) {
ss >> m[i][j];
}
}
printf("Done.\n");
in_f_img.close();
printf("Processing image number %d......... ", k+1);
int tag = ERROR_TAG;
if (type.compare("sobel") == 0) {
tag = SOBEL_TAG;
} else if (type.compare("mean_removal") == 0) {
tag = MEANR_TAG;
} else {
fprintf(stderr, "Me, %d, can not recognize this type of filter. ", rank);
}
// I got only one kid, I will send him the entire image
if (kids.size() == 1) {
MPI_Send(m[0], (H + 2) * (W + 2), MPI_INT, kids[0], tag, MPI_COMM_WORLD);
} else {
for (int i = 0; i < (int)kids.size(); i++) {
// last kid
if (i == (int)kids.size() - 1) {
MPI_Send(m[i * ((int)H/kids.size())],
((int)H / kids.size() + 2 + H % kids.size()) * (W + 2),
MPI_INT, kids[i], tag, MPI_COMM_WORLD);
} else {
MPI_Send(m[i * ((int)H/kids.size())],
((int)H / kids.size() + 2) * (W + 2), MPI_INT, kids[i], tag, MPI_COMM_WORLD);
}
}
}
free(m[0]);
free(m);
int** mNew = my_alloc(H, W);
for (int i = 0; i < (int)kids.size(); i++) {
// last kid
if (i == (int)kids.size() - 1) {
MPI_Recv(mNew[i * ((int)H/kids.size())], (((int)H / kids.size()) + H % kids.size())* W,
MPI_INT, kids[i], RESULT_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
} else {
MPI_Recv(mNew[i * ((int)H/kids.size())], ((int)H / kids.size()) * W, MPI_INT,
kids[i], RESULT_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
}
}
printf("Done.\n");// Done processing message
printf("Writing results into a new file... ");
for(i = 0; i < H; ++i) {
for (j = 0; j < W; ++j) {
fprintf(out_f_img, "%d\n", mNew[i][j]);
}
}
printf("Done.\n");
free(mNew[0]);
free(mNew);
fclose(out_f_img);
}
infile.close();
outfile.close();
int finished = 1;
for (int i = 0; i < (int)kids.size(); ++i) {
MPI_Send(&finished, 1, MPI_INT, kids[i], TERMINATION_TAG, MPI_COMM_WORLD);
}
int * statRcv = (int *) malloc(nProcesses* sizeof(int));
for (int i = 0; i < (int)kids.size(); ++i) {
MPI_Recv(statRcv, nProcesses, MPI_INT,
kids[i], TERMINATION_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
for (int i = 0; i < nProcesses; ++i) {
if (statRcv[i] > 0) {
stat[i] = statRcv[i];
}
}
}
free(statRcv);
FILE * f_stat = fopen(argv[3], "w");
// write in statistics.out the lines processed
for (int i = 0; i < nProcesses; ++i) {
fprintf(f_stat, "%d: %d\n", i, stat[i]);
}
fclose(f_stat);
} else {
int nr_tests = 0;
MPI_Status my_status;
MPI_Recv(&nr_tests, 1, MPI_INT, MPI_ANY_SOURCE, NR_TEST_TAG, MPI_COMM_WORLD, &my_status);
if (parent[rank] == -1) {
parent[rank] = my_status.MPI_SOURCE;
} else {
fprintf(stderr, "Eu, %d, aveam deja parinte când am primit de la %d.", rank, my_status.MPI_SOURCE);
}
vector<int> kids;
for (int i = 0; i < nProcesses; ++i) {
if (topo[i] == 1 && parent[rank] != i) {
kids.push_back(i);
}
}
for (int i = 0; i < (int)kids.size(); i++) {
MPI_Send(&nr_tests, 1, MPI_INT, kids[i], NR_TEST_TAG, MPI_COMM_WORLD);
}
for (int k = 0; k < nr_tests; k++) {
int info_img[3];
MPI_Recv(info_img, 3, MPI_INT, parent[rank], IMG_INFO_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
int H = info_img[0] - 2;
int W = info_img[1] - 2;
int maxValue = info_img[2];
if (kids.size() > 0) {
if (kids.size() == 1) {
info_img[0] = (int)H / kids.size() + 2;
MPI_Send(info_img, 3, MPI_INT, kids[0], IMG_INFO_TAG, MPI_COMM_WORLD);
} else {
for (int i = 0; i < (int)kids.size(); i++) {
if (i < (int)kids.size() - 1) {
info_img[0] = (int)H / kids.size() + 2;
} else {
// last kid
info_img[0] = (int) H / kids.size() + 2 + H % kids.size();
}
MPI_Send(info_img, 3, MPI_INT, kids[i], IMG_INFO_TAG, MPI_COMM_WORLD);
}
}
}
int** m = my_alloc(H+2, W+2);
if (m == NULL) {
fprintf(stderr, "Out of memory!\n");
}
int** mNew = my_alloc(H, W);
if (mNew == NULL) {
fprintf(stderr, "Out of memory!\n");
}
// receive pixels
MPI_Status stat_filter;
MPI_Recv(m[0], (H+2) * (W+2),
MPI_INT, parent[rank], MPI_ANY_TAG, MPI_COMM_WORLD, &stat_filter);
int tag = stat_filter.MPI_TAG;
if (kids.size() > 0) {
if (kids.size() == 1) {
MPI_Send(m[0], (H+2) * (W+2),
MPI_INT, kids[0], tag, MPI_COMM_WORLD);
MPI_Recv(mNew[0], H * W,
MPI_INT, kids[0], RESULT_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
MPI_Send(mNew[0], H * W,
MPI_INT, parent[rank], RESULT_TAG, MPI_COMM_WORLD);
} else {
for (int i = 0; i < (int)kids.size(); i++) {
if (i == (int)kids.size() - 1) { // last kid
MPI_Send(m[i * ((int)H/kids.size())], (((int)H / kids.size()) + 2 + H % kids.size()) * (W+2),
MPI_INT, kids[i], tag, MPI_COMM_WORLD);
} else {
MPI_Send(m[i * ((int)H/kids.size())], (((int)H / kids.size()) + 2) * (W+2),
MPI_INT, kids[i], tag, MPI_COMM_WORLD);
}
}
// Receiving the result from this node's kids
for (int i = 0; i < (int)kids.size(); i++) {
if (i == (int)kids.size() - 1) { // last kid
MPI_Recv(mNew[i * ((int)H/kids.size())], (((int)H / kids.size()) + H % kids.size()) * W,
MPI_INT, kids[i], RESULT_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
} else {
MPI_Recv(mNew[i * ((int)H/kids.size())], ((int)H / kids.size()) * W,
MPI_INT, kids[i], RESULT_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
}
}
// Sending the result to the parent
MPI_Send(mNew[0], H * W, MPI_INT, parent[rank], RESULT_TAG, MPI_COMM_WORLD);
}
// leaf, applying the filter
} else {
if (tag == SOBEL_TAG) {
for(int i = 1; i < H+1; ++i) {
for (int j = 1; j < W+1; ++j) {
mNew[i-1][j-1] = m[i-1][j-1] - m[i-1][j+1] +
2 * m[i][j-1] - 2 * m[i][j+1] +
m[i+1][j-1] - m[i+1][j+1] + 127;
if (mNew[i-1][j-1] < 0) {
mNew[i-1][j-1] = 0;
}
if (mNew[i-1][j-1] > maxValue) {
mNew[i-1][j-1] = maxValue;
}
}
}
} else if(tag == MEANR_TAG) {
for(int i = 1; i < H+1; ++i) {
for (int j = 1; j < W+1; ++j) {
mNew[i-1][j-1] = -m[i-1][j-1] - m[i-1][j]- m[i-1][j+1] +
- m[i][j-1] + 9 * m[i][j] - m[i][j+1] +
- m[i+1][j-1] - m[i+1][j] - m[i+1][j+1];
if (mNew[i-1][j-1] < 0) {
mNew[i-1][j-1] = 0;
}
if (mNew[i-1][j-1] > maxValue) {
mNew[i-1][j-1] = maxValue;
}
}
}
} else {
fprintf(stderr, "Error, unknown tag received: %d", tag);
}
stat[rank] += H;
MPI_Send(mNew[0], H * W,
MPI_INT, parent[rank], RESULT_TAG, MPI_COMM_WORLD);
}
free(mNew[0]);
free(mNew);
free(m[0]);
free(m);
}
int finished = 0;
MPI_Recv(&finished, 1, MPI_INT, parent[rank], TERMINATION_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
if (kids.size() == 0){ // nod frunză {
MPI_Send(stat, nProcesses, MPI_INT, parent[rank], TERMINATION_TAG, MPI_COMM_WORLD);
} else { // nod intermediar
int finished = 1;
for (int i = 0; i < (int)kids.size(); ++i) {
MPI_Send(&finished, 1, MPI_INT, kids[i], TERMINATION_TAG, MPI_COMM_WORLD);
}
int * statRcv = (int *) malloc(nProcesses* sizeof(int));
for (int i = 0; i < (int)kids.size(); ++i) {
MPI_Recv(statRcv, nProcesses, MPI_INT,
kids[i], TERMINATION_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
for (int i = 0; i < nProcesses; ++i) {
if (statRcv[i] > 0) {
stat[i] = statRcv[i];
}
}
}
free(statRcv);
// Send the statistics to this node's parent
MPI_Send(stat, nProcesses, MPI_INT, parent[rank], TERMINATION_TAG, MPI_COMM_WORLD);
}
}
free(stat);
free(topo);
free(parent);
printf("Bye from %i/%i\n", rank, nProcesses);
MPI_Finalize();
return 0;
}