-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathslides.tex
669 lines (523 loc) · 27.7 KB
/
slides.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
\documentclass{beamer}
\include{environment}
\usetheme{Frankfurt}
\useinnertheme{circles}
%\useoutertheme{miniframes}
\title{Isogeny-based Oblivious Transfer Protocols}
\author{Riccardo Zanotto}
\date{December 17, 2021}
\begin{document}
\createprocedureblock{myproc}{center, boxed}{}{}{}
\begin{frame}
\maketitle
\end{frame}
\begin{frame}
\frametitle{Contents}
\tableofcontents
\end{frame}
\section{Oblivious transfer}
\begin{frame}
\frametitle{What is oblivious transfer?}
\begin{center}
\begin{bbrenv}{A}
\begin{bbrbox}[name=OT, namepos=middle, minheight=2cm]
\end{bbrbox}
\bbrmsgto{top={$(m_0,m_1)$},fixedoffset=2ex,length=1.5cm}
\bbrmsgtxt[xshift=1.5cm]{\includegraphics[height=5cm]{images/Alice}}
\bbrqryfrom{top=$\sigma$,fixedoffset=2ex,length=1.5cm}
\bbrqryto{top=$m_\sigma$,fixedboffset=2ex,length=1.5cm}
\bbrqrytxt[]{\includegraphics[height=5cm]{images/Bob}}
\end{bbrenv}
\end{center}
\end{frame}
\begin{frame}
\frametitle{Multi-party computation}
\centering
\includegraphics[width=0.9\textwidth]{images/MPC}
\end{frame}
\begin{frame}
\frametitle{Why?}
\begin{block}{Why MPC?}
MPC studies the task of \emph{computing on private data}; sillier and serious examples:
\begin{itemize}
\item Deciding who is richer between two people without revealing their total worth.
\item Running auctions with secret bidding.
\item Distributed voting.
\item Threshold signatures or decryptions.
\item Running machine learning models on sensitive information, like X-ray pictures.
\end{itemize}
\end{block}
\end{frame}
\begin{frame}
\frametitle{Why?}
\begin{block}{Why OT?}
Oblivious transfer is defined by a very simple function: $$f((m_0,m_1),\sigma)=(\lambda,m_\sigma)$$
It can be used as a \emph{building block} of any MPC protocol, via the GMW construction (or \emph{garbled circuits}).
\end{block}
\pause
\begin{block}{What do we want from OT?}
\begin{itemize}
\item Efficiency: for MPC we require many OTs; ususally they use public key cryptography (slow), so we need to keep low the number of rounds and the public key operations.
\item Security: since the OTs can be run in parallel, we want privacy for concurrent executions and compositions.
\end{itemize}
\end{block}
\end{frame}
\begin{frame}
\frametitle{The simplest OT by Chou and Orlandi}
\begin{block}{The protocol}
\begin{center}
\begin{tikzpicture}
\node at (0,0) {\bf Sender};
\node at (6,0) {\bf Receiver};
\node at (0,-0.5) {Input: $(m_0,m_1)$};
\node at (6,-0.5) {Input: $\sigma$};
\node at (0,-1.5) {pick random $a\in\Zn{(p-1)}$};
\node at (0,-2) {compute $A=g^a$};
\node at (6,-1.5) {pick random $b\in\Zn{(p-1)}$};
\draw[->] (1,-2.5) to node[auto] {$A$} (5,-2.5);
\node at (6,-3) {compute $B=A^\sigma\cdot g^b$};
\draw[->] (5,-3.5) to node[above] {$B$} (1,-3.5);
\node at (0,-4) {compute $k_i=H((B/A^i)^a)$};
\node at (6,-4) {compute $k_\sigma=H(A^b)$};
\node at (0,-4.5) {compute $c_i=m_i\oplus k_i$};
\draw[->] (1,-5) to node[above] {$(c_0,c_1)$} (5,-5);
\node at (6,-5.5) {compute $m_\sigma=c_\sigma\oplus k_\sigma$};
\end{tikzpicture}
\end{center}
\end{block}
\end{frame}
\begin{frame}
\frametitle{The problems of simplest OT}
\begin{block}{Why not?}
\begin{itemize}[<+->]
\item Uses Diffie-Hellman: Shor's quantum algorithm solves the discrete logarithm problem in polynomial time. If we want security in a world with quantum computers, we need new cryptography.
\item Wrong security proof: the proofs for MPC protocols are done in the Universal Composability framework and require many details; other cryptographers noticed that the authors missed some of them. There seems to be no way of fixing the proof.
\end{itemize}
\end{block}
\end{frame}
\section{Isogeny-based cryptography}
\begin{frame}
\frametitle{Post-quantum cryptography}
\begin{block}{The problem}
In 1994 Shor found a quantum polynomial algorithm for \emph{order finding}. With this, it is possible to solve dicrete logarithms in any abelian group and to factor large integers.
Most of public key cryptography is then broken (RSA, DH, ECDH).
\end{block}
\pause
\begin{block}{The solution}
In 2016 NIST started a competition to find new \emph{post-quantum} public key primitives. The proposals are based on:
\begin{itemize}
\item Lattices
\item Codes
\item Multivariate equation
\item \color<3->{red}{Supersingular isogenies}
\end{itemize}
\end{block}
\end{frame}
\begin{frame}
\frametitle{Elliptic curves}
\begin{definition}
An \emph{elliptic curve} $E$ \emph{over} $K$ is a smooth projective curve of genus $1$, with a given $K$-rational point.
\end{definition}
\begin{block}{For cryptographers}
An elliptic curve $E$ is a Weierstrass equation $$y^2=x^3+ax+b$$ where $4a^3+27b^2\neq0$; don't forget the point at infinity!
\end{block}
\begin{theorem}
Let $E$ be an elliptic curve over $K$; then $E(K)$ has an abelian group structure $\oplus$, with neutral element the point at infinity.
\end{theorem}
\end{frame}
\begin{frame}
\frametitle{The group law}
\begin{center}
\begin{tikzpicture}[domain=-2.4566:4,samples=100,yscale=1/2]
\draw plot (\x,{sqrt(\x*\x*\x-4*\x+5)});
\draw plot (\x,{-sqrt(\x*\x*\x-4*\x+5)});
\draw[thin,gray,-latex] (0,-7) -- (0,7);
\draw[thin,gray,-latex] (-3,0) -- (4,0);
\draw (-3,1) -- (4,8/3+3);
\begin{scope}[every node/.style={draw,circle,inner sep=1pt,fill},cm={1,2/3,0,0,(0,3)}]
\node at (-2.287980,0) {};
\node at (-0.535051,0) {};
\node at (3.267475,0) {};
\end{scope}
\begin{scope}[every node/.style={yshift=0.3cm},cm={1,2/3,0,0,(0,3)}]
\node at (-2.287980,0) {$P$};
\node at (-0.535051,0) {$Q$};
\node at (3.267475,0) {$R$};
\end{scope}
\draw[dashed] (3.267475,3.267475*2/3+3) -- (3.267475,-3.267475*2/3-3)
node[draw,circle,inner sep=1pt,fill] {}
node[xshift=-0.1cm,anchor=east] {$P\oplus Q$};
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}
\frametitle{Isogenies}
\begin{definition}
Let $E_1$ and $E_2$ be elliptic curves, with points at infinity $O_1,O_2$. An \emph{isogeny} is a morphism of curves $\phi:E_1\to E_2$ such that $\phi(O_1)=O_2$.
\end{definition}
\begin{theorem}
Let $\phi:E_1 \to E_2$ be a non-constant isogeny. Then $\phi$ induces a surjective group homomorphism $E_1(\bar K)\to E_2(\bar K)$ with finite kernel.
Moreover, separable isogenies are in bijection with finite subgroups of $E_1$.
\end{theorem}
\begin{block}{Vélu's formula}
Given a subgroup $G<E(K)$ of an elliptic curve defined over $K$, there is a formula that in time $O(\# G)$ computes the corresponding isogeny and the codomain curve.
\end{block}
\end{frame}
\begin{frame}
\frametitle{Elliptic curves over finite fields}
\begin{definition}
Let $E/\F_q$ be an elliptic curve; then its Frobenius endomorphism is the morphism $\pi: E\to E$ given by $$\pi(X:Y:Z)=(X^q:Y^q:Z^q)$$
\end{definition}
\begin{theorem}
Let $E/\F_q$ be an elliptic curve and $\pi$ its Frobenius endomorphism. Then there exists $t\in\Z$ such that $$\pi^2-t\pi+q=0.$$
Moreover, $\# E(\F_q) = q+1-t$ with $|t|\le2\sqrt q$.
\end{theorem}
\end{frame}
\begin{frame}
\frametitle{Supersingular elliptic curves}
\begin{theorem}
Let $E/K$ be an elliptic curve, with $\car K=p$. The following are equivalent:
\begin{enumerate}
\item $E[p^r]=\{O\}$ for some (all) $r\ge1$.
\item The dual isogeny $\hat\pi$ is inseparable.
\item The map $[p]:E\to E$ is purely inseparable and $j(E)\in\F_{p^2}$.
\item $\End(E)$ is a maximal order in a quaternion algebra.
\item $p\mid t$, the trace of Frobenius.
\end{enumerate}
If any of these properties hold, we say that $E$ is \emph{supersingular}; otherwise $E$ is said to be \emph{ordinary}.
\end{theorem}
\end{frame}
\begin{frame}
\frametitle{The CM action}
\begin{definition}
Let $\Oc$ be an order in an imaginary quadratic field $K$, and denote by $Ell_q(\Oc)$ the set of $\F_q$-isomorphism classes of elliptic curves with \emph{complex multiplication} by $\Oc$, i.e. with $\End_{\F_q}(E)=\Oc$.
\end{definition}
\begin{theorem}
Let $\F_q$ be a finite field and $\Oc\subset\Q(\sqrt{-D})$ an order in a quadratic imaginary field. Assume $Ell_q(\Oc)$ is non empty; then there is a free and transitive action given by
\begin{align*}
Cl(\Oc)\times Ell_q(\Oc) & \to Ell_q(\Oc)\\
(\mathfrak{a}, E) & \mapsto E/E[\mathfrak{a}]
\end{align*}
\end{theorem}
\end{frame}
\begin{frame}
\frametitle{CM graphs}
\begin{center}
\begin{tikzpicture}[scale=0.8]
\begin{scope}
\def\crater{12}
\def\jumpa{-8}
\def\jumpb{9}
\def\diam{3cm}
\foreach \i in {1,...,\crater} {
\uncover<2->{\draw[blue] (360/\crater*\i : \diam) to[bend right] (360/\crater*\i+360/\crater : \diam);}
\uncover<3->{\draw[red] (360/\crater*\i : \diam) to[bend right] (360/\crater*\i+\jumpa*360/\crater : \diam);}
\uncover<4->{\draw[green] (360/\crater*\i : \diam) to[bend right=50] (360/\crater*\i+\jumpb*360/\crater : \diam);}
}
\foreach \i in {1,...,\crater} {
\draw[fill] (360/\crater*\i: \diam) circle (2pt) +(360/\crater*\i: 0.4) node{$E_{\i}$};
}
\end{scope}
\begin{scope}[xshift=4.2cm]
\draw (0,3) node[anchor=west] {\parbox{4.5cm}{%
Vertices are elliptic curves with complex
multiplication by $\Oc$.\\
\uncover<2->{Edges are \emph{horizontal isogenies} of
bounded prime degree.} }};
\uncover<2->{\draw[blue] (0,0) -- (0.5,0)
(0.5,0) node[anchor=west] {degree $2$};}
\uncover<3->{\draw[red] (0,-1) -- (0.5,-1) (0.5,-1)
node[anchor=west] {degree $3$};}
\uncover<4->{\draw[green]
(0,-2) -- (0.5,-2) (0.5,-2) node[anchor=west] {degree $5$};}
\end{scope}
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}
\frametitle{Diffie-Hellman}
\begin{center}
\begin{tikzpicture}
\node at (3,3) {\bf Common setup};
\node at (3,2.5) {Fix abelian group $\F_p^\ast$};
\node at (3,2) {Set $N=\# \F_p^\ast=p-1$};
\node at (3,1.5) {Fix $g\in\F_p^\ast$};
\node at (0,0) {\bf Alice};
\node at (6,0) {\bf Bob};
\node at (0,-1) {pick random $a\in\Zn{N}$};
\node at (0,-1.5) {compute $A=g^a$};
\node at (6,-1) {pick random $b\in\Zn{N}$};
\node at (6,-1.5) {compute $B=g^b$};
\draw[->]
(1,-2) to node[auto] {$A$} (5,-2);
\draw[->] (5,-2.5) to node[auto] {$B$} (1,-2.5);
\node at (3,-3.5) {\alert{$B^a=g^{ba}=g^{ab}=A^b$}};
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}
\frametitle{Hard homogeneous spaces}
\begin{center}
\begin{tikzpicture}
\node at (3,3) {\bf Common setup};
\node at (3,2.5) {Fix set $X=\F_p^\ast$};
\node at (3,2) {Fix group $G=\Zn{N}$};
\node at (3,1.5) {Fix $g\in X$};
\node at (0,0) {\bf Alice};
\node at (6,0) {\bf Bob};
\node at (0,-1) {pick random $a\in G$};
\node at (0,-1.5) {compute $A=a\star g$};
\node at (6,-1) {pick random $b\in G$};
\node at (6,-1.5) {compute $B=b\star g$};
\draw[->]
(1,-2) to node[auto] {$A$} (5,-2);
\draw[->] (5,-2.5) to node[auto] {$B$} (1,-2.5);
\node at (3,-3.5) {\alert{$a\star B= a\star(b\star g)=b\star(a\star g)=b\star A$}};
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}
\frametitle{A HHS from complex multiplication}
\begin{center}
\begin{tikzpicture}
\node at (3,3) {\bf Common setup};
\node at (3,2.5) {Fix set $X=Ell_p(\Oc)$};
\node at (3,2) {Fix group $G=Cl(\Oc)$};
\node at (3,1.5) {Fix $E_0\in X$};
\node at (0,0) {\bf Alice};
\node at (6,0) {\bf Bob};
\node at (0,-1) {pick random $[\mathfrak{a}]\in G$};
\node at (0,-1.5) {compute $E_A=[\mathfrak{a}]\star E_0$};
\node at (6,-1) {pick random $[\mathfrak{b}]\in G$};
\node at (6,-1.5) {compute $E_B=[\mathfrak{b}]\star E_0$};
\draw[->]
(1,-2) to node[auto] {$E_A$} (5,-2);
\draw[->] (5,-2.5) to node[auto] {$E_B$} (1,-2.5);
\node at (3,-3.5) {\alert{$[\mathfrak{a}]\star E_B= [\mathfrak{a}]\star([\mathfrak{b}]\star E_0)=[\mathfrak{b}]\star([\mathfrak{a}]\star E_0)=[\mathfrak{b}]\star E_A$}};
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}
\frametitle{The CSIDH protocol}
\begin{block}{The setting}
Fix a prime prime of the form $p=4\ell_1\cdots\ell_n-1$; fix also $E_0:y^2=x^3+x$, which is supersingular over $\F_p$; define $\Oc:=\End_p(E_0)\cong\Z[\sqrt{-p}]$.
\textbf{The group}: $Cl(\Oc)$.
\textbf{The set}: $Ell_p(\Oc)$.
\textbf{The action}: we only use particular ideals (and their inverses) $\mathfrak{l}_i=(\ell_i,\pi-1)$, which generate $Cl(\Oc)$. The action is easy to compute with Vélu's formula, since $E[\mathfrak{l}_i]=E[\ell_i]\cap E(\F_p)$ has $\ell_i$ points, all defined over $\F_p$.
\end{block}
\begin{block}{Hard problems}
\textbf{Vectorization}: given two curves $E,E'$, find $[\mathfrak{a}]\in Cl(\Oc)$ with smooth norm such that $[\mathfrak{a}]\star E = E'$.
\end{block}
\end{frame}
\begin{frame}
\frametitle{Quantum security of CSIDH}
\begin{block}{Subexponential attack}
\begin{itemize}
\item CSIDH, and any hard homogeneous space, reduces to the \emph{hidden shift problem}.
\item Kuperberg's and Regev's quantum algorithms solve HShP in $O(\exp(\sqrt{\log \# G}))$ for generic $G$.
\item For CSIDH, $G=Cl(\Oc)=Cl(\Z[\sqrt{-p}])$ thus $\# G\approx\sqrt{p}$.
\item Precise estimations still debated, \texttt{CSIDH-512} might have $2^{64}$-qbit security.
\end{itemize}
\end{block}
\end{frame}
\section{Security definitions}
\begin{frame}
\frametitle{Perfect secrecy}
\begin{definition}
The one-time pad is an encryption scheme whose encryption and decryption functions are
$$ \enc(k,m)=k\oplus m\;\;\;\;\; \dec(k,c)=k\oplus c,$$
where $\oplus$ denotes the bit-wise XOR of the bitstrings.
\end{definition}
\begin{definition}
We say that an encryption scheme $(\kgen,\enc,\dec)$ is \emph{perfectly secure} if for any $m_0,m_1\in\mathcal M$ and all $c\in\mathcal C$ it holds that
$$\prob{\enc(k,m_0)=c} = \prob{\enc(k,m_1)=c}$$
\end{definition}
\end{frame}
\begin{frame}
\frametitle{Simulation-based security}
\begin{block}{The main idea}
There is an \emph{ideal world} in which the adversary interacts only with a trusted third party; the \emph{real world} instead runs the actual protocol.
If any real world adversary can be \emph{simulated} in the ideal world, then the protocol is \emph{secure}.
\end{block}
\begin{definition}
Let $f=(f_1,f_2)$ be a functionality. We say that protocol $\pi$ \emph{securely computes $f$ in the presence of semi-honest adversaries} if there exists two PPT algorithms $\sdv_1,\sdv_2$ such that
$$ \{ (\sdv_i(w^i,f_i(x,y)), f(x,y) ) \}_{x,y} \cindist \{ (\texttt{view}_i^\pi(x,y), \texttt{output}^\pi(x,y)) \}_{x,y} $$
for both $i=1,2$. (recall that $w^1=x,w^2=y$)
\end{definition}
\end{frame}
\begin{frame}
\frametitle{Malicious adversaries}
\begin{alertblock}{The problem}
If the adversary can behave any way he wants, he could also \emph{change} the inputs he uses, and the simulator doesn't have access to them.
The simulator has then to \emph{extract} the input of the corrupted parties from the adversary.
\end{alertblock}
\pause
\begin{block}{The ideal execution}
Suppose $x,y$ are the original inputs, and $\sdv$ controls $P_i$.
\begin{itemize}
\item Honest party $P_j$ sends its input to the trusted party.
\item Corrupted party $P_i$ sends anyting he wants.
\item Trusted party receives $(x',y')$ and computes $f(x',y')$.
\item Trusted party sends $f_i(x',y')$ to the corrupted $P_i$.
\item Trusted party sends $f_j(x',y')$ to the honest $P_j$.
\end{itemize}
\end{block}
\end{frame}
\begin{frame}
\frametitle{Security against malicious adversaries}
\begin{definition}
Let $f$ be a two-party functionality, and $\pi$ a protocol that correctly computes $f$. Then $\pi$ is said to \emph{securely compute $f$ in the presence of static malicious adversaries} if for every PPT adversary $\adv$ in the real model, there exists a PPT adversary $\sdv$ in the ideal model such that for any $i\in\{1,2\}$,
$$ \{ \textsc{\scriptsize IDEAL}_{f,\sdv,i}(x,y) \}_{x,y} \cindist \{ \textsc{\scriptsize REAL}_{\pi,\adv,i}(x,y) \}_{x,y}$$
\end{definition}
\begin{exampleblock}{Why simulator?}
Algorithm $\sdv$ will use algorithm $\adv$ as a \emph{black-box}, using some random values as the input of the honest parties. $\sdv$ will thus \emph{simulate} the honest parties' part of the protocol with fake inputs.
\end{exampleblock}
\end{frame}
\begin{frame}
\frametitle{Universal composability}
\begin{block}{A general model}
The distinguisher between ideal and real world can be made \emph{interactive}, thus becoming part of the execution; it is called the \emph{environment} $\zdv$.
\end{block}
\begin{center}
\includegraphics[width=\textwidth]{images/router}
\end{center}
\end{frame}
\begin{frame}
\frametitle{Back to simplest OT}
\begin{center}
\begin{tikzpicture}
\node at (0,0) {\bf Sender};
\node at (6,0) {\bf Receiver};
\node at (0,-0.5) {Input: $(m_0,m_1)$};
\node at (6,-0.5) {Input: $\sigma$};
\node at (0,-1.5) {pick random $a\in\Zn{(p-1)}$};
\node at (0,-2) {compute $A=g^a$};
\node at (6,-1.5) {pick random $b\in\Zn{(p-1)}$};
\draw[->] (1,-2.5) to node[auto] {$A$} (5,-2.5);
\node at (6,-3) {compute $B=A^\sigma\cdot g^b$};
\draw[->] (5,-3.5) to node[above] {$B$} (1,-3.5);
\node at (0,-4) {compute $k_i=H((B/A^i)^a)$};
\node at (6,-4) {compute $k_\sigma=H(A^b)$};
\node at (0,-4.5) {compute $c_i=m_i\oplus k_i$};
\draw[->] (1,-5) to node[above] {$(c_0,c_1)$} (5,-5);
\node at (6,-5.5) {compute $m_\sigma=c_\sigma\oplus k_\sigma$};
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}
\frametitle{The main issue of the simplest OT}
\begin{block}{How to extract input?}
In case of a corrupted receiver, the simulator extracts the choice bit from the query $A^b$ for the decryption key by the receiver: from this, the simulator knows $g^{ab}$ and may get $\sigma$ from $B^a=g^{a^2\sigma}g^{ab}$.
Upon obtaining $\sigma$, the simulator can query the functionality and compute a ciphertext decrypting to the right $m_\sigma$.
\end{block}
\pause
\begin{alertblock}{The issue}
What if the corrupted receiver computes the key \emph{after} having received the ciphertexts?
The simulator has to send a choice bit to the trusted party before sending the ciphertexts; however it can't know the correct $\sigma$, and the environment can distinguish.
\end{alertblock}
\end{frame}
\begin{frame}
\frametitle{The Algebraic Group Model}
\begin{exampleblock}{The solution}
We extract at a different point of the execution!
We need additional information, though.
\end{exampleblock}
\begin{block}{Algebraic behaviour}
In AGM we impose that whenever the adversary ouptuts an $h\in G$, it also ouputs $h=\prod g_i^{x_i}$, where $g_i$ are group elements that it has already seen.
\end{block}
\begin{block}{How it helps}
When the adversary outputs the value $B$, it must give an explanation in terms of $A$ and the public generator $g$. In particular, the simulator learns $B=A^xg^y$; if $x\in\bin$ we have extracted $\sigma$, otherwise we will use random messages.
\end{block}
\end{frame}
\begin{frame}
\frametitle{The security of CO in the AGM}
\begin{block}{The result}
In their paper, Abdalla et al. prove UC-security against adaptive malicious adversaries of the Chou and Orlandi protocol in the AGM.
\end{block}
\begin{block}{The proof}
Using the equation $B=A^xg^y$, the authors construct a simulation if $x\in\bin$, querying the functionality for $m_x$.
The environment should only be able to check if $m_\sigma$ is the correct one, but should not be able to decrypt the other message; this means not knowing the key $k_{1-\sigma}$, i.e. it shouldn't know the group element $g^{ab}g^{\pm a^2}$.
The authors argue that indeed the adversary cannot know the other key, since from its group representation and the representation of $B$, the adversary could have computed a discrete logarithm.
\end{block}
\end{frame}
\section{The Explicit Isogeny model}
\begin{frame}
\frametitle{Our solution}
\begin{block}{The plan}
\begin{itemize}
\item Take a semi-honest two round OT protocol based on isogenies.
\item Propose a new model, similar to AGM, called \emph{Explicit Isogenies}.
\item Prove that the protocol is UC-secure against malicious adversaries in the EI model.
\item {\color{gray}Prove that the EI model is equivalent to plain model of computation.}
\item Get a post-quantum two-rounds OT protocol that is secure against malicious adversaries.
\end{itemize}
\end{block}
\end{frame}
\begin{frame}
\frametitle{The protocol}
\begin{center}
%\resizebox{0.7\textwidth}{!}{
\myproc[codesize=\scriptsize]{Protocol $\Pi_{tw}$}{
\textbf{Sender} \> \> \textbf{Receiver} \\
\text{Input: }(m_0, m_1) \> \> \text{Input: }\sigma \\
s \sample Cl(\Oc) \> \> r \sample Cl(\Oc) \\
A = s\star E \> \> C = r\star E \\
\> \> \text{if } \sigma=1: C=C^t \\
\> \sendmessageleft*{C} \> \\
k_0 = H(s\star C) \> \>\\
k_1 = H(s\star C^t) \> \>\\
c_i = \enc_{k_i}(m_i) \> \> \\
\> \sendmessageright*{A, (c_0, c_1)} \> \\
\> \> k_\sigma = H(r\star A) \\
\> \> m_\sigma= \dec_{k_\sigma}(c_\sigma) \\
}
%}
\end{center}
\end{frame}
\begin{frame}
\frametitle{The EI model}
\begin{definition}
We say that a Turing machine $\adv$ \emph{uses CM-explicit isogenies} if whenever it outputs a supersingular elliptic curve $E/\F_p$, it also outputs a smooth norm ideal $\mathfrak a\in Cl(\Oc)$ such that $E=\mathfrak a\star E_1$, where $E_1$ is a curve that it has already seen, or its twist.
\end{definition}
\pause
\begin{theorem}
The protocol $\Pi_{tw}$ CMEI-realizes the functionality $\Fun_{OT}$ against malicious adversaries.
\end{theorem}
\begin{proof}
We follow the proof of the simplest OT in AGM: we extract from the public key explanation. If the adversary can know ``forbidden" keys, a CSIDH vectorization problem can be solved.
\end{proof}
\end{frame}
\begin{frame}
\frametitle{The missing step}
\begin{block}{Sampling problem}
\includegraphics[width=\linewidth]{images/DeFeo_twitter}
\end{block}
\begin{block}{The consequences}
If sampling is indeed hard, and people start using it as an assumption, EI model should impose no true additional restrictions.
Caveat: we need to be able to convert isogeny walks into smooth ideals; another open problem. Or maybe not?
\end{block}
\end{frame}
\begin{frame}
\frametitle{Conclusions}
\begin{block}{Results}
\begin{itemize}
\item New model for analyzing the security of isogeny-based MPC protocols.
\item Improved security for a two-round OT protocol.
\item If sampling problem is hard, the EI model is equivalent to UC.
\end{itemize}
\end{block}
\begin{block}{Future work}
\begin{itemize}
\item Study other isogeny-based protocols, trying to make them more efficient.
\item Implement and benchmark different versions of the protocols.
\item Investigate the sampling problem and its hardness.
\item Investigate the possible equivalence of isogeny walks and the CM action.
\end{itemize}
\end{block}
\end{frame}
\begin{frame}
\begin{center}
\huge Thanks for your attention!
\end{center}
\end{frame}
\end{document}