forked from afiaka87/pyglide
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtgd.py
executable file
·217 lines (196 loc) · 6.68 KB
/
tgd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
from glide_text2im.download import load_checkpoint
import argparse
import time
import os
import util
import re
import torch as th
from PIL import Image
from termcolor import cprint
import sys
from glide_text2im.clip.model_creation import create_clip_model
sys.path.append("./clipseg")
# from models.clipseg import CLIPDensePredT
from PIL import Image
from torchvision import transforms
from matplotlib import pyplot as plt
# _device = th.device("cuda" if th.cuda.is_available() else "cpu")
# model = CLIPDensePredT(version='ViT-B/16', reduce_dim=64)
# model.eval();
# model.load_state_dict(th.load('weights/rd64-uni.pth', map_location=_device), strict=False);
# input_image = Image.open('fox.jpg')
# prompts = [
# 'an image of a ',
# '',
# '',
# ''
# ]
# transform = transforms.Compose([
# transforms.ToTensor(),
# transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
# transforms.Resize((352, 352)),
# ])
# img = transform(input_image).unsqueeze(0)
# with th.no_grad():
# preds = model(img.repeat(4,1,1,1), prompts)[0]
# _, ax = plt.subplots(1, 5, figsize=(15, 4))
# [a.axis('off') for a in ax.flatten()]
# ax[0].imshow(input_image)
# [ax[i+1].imshow(th.sigmoid(preds[i][0])) for i in range(4)];
# [ax[i+1].text(0, -15, prompts[i]) for i in range(4)];
# # %%
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--prompt", type=str, help="a caption to visualize", required=True
)
parser.add_argument("--batch_size", type=int, help="", default=4, required=False)
parser.add_argument('--sr', action='store_true', help='upsample to 4x')
parser.add_argument(
"--guidance_scale", type=float, help="", default=3.0, required=False
)
parser.add_argument(
"--base_x",
type=int,
help="width of base gen. has to be multiple of 16",
default=64,
required=False,
)
parser.add_argument(
"--seed",
type=int,
help="random seed",
default=0,
)
parser.add_argument(
"--base_y",
type=int,
help="width of base gen. has to be multiple of 16",
default=64,
required=False,
)
parser.add_argument(
"--respace",
type=str,
help="Number of timesteps to use for generation. Lower is faster but less accurate. ",
default="100",
required=False,
)
parser.add_argument(
"--prefix",
type=str,
help="Output dir for generations. Will be created if it doesn't exist with subfolders for base and upsampled.",
default="glide_outputs",
required=False,
)
parser.add_argument(
"--upsample_temp",
type=float,
help="0.0 to 1.0. 1.0 can introduce artifacts, lower can introduce blurriness.",
default=0.998,
required=False,
)
return parser.parse_args()
def caption_to_filename(caption: str) -> str:
return re.sub(r"[^\w]", "_", caption).lower()[:200]
def save_images(batch: th.Tensor, caption: str, subdir: str, prefix: str = "outputs"):
scaled = ((batch + 1) * 127.5).round().clamp(0, 255).to(th.uint8).cpu()
reshaped = scaled.permute(2, 0, 3, 1).reshape([batch.shape[2], -1, 3])
pil_image = Image.fromarray(reshaped.numpy())
clean_caption = caption_to_filename(caption)
directory = os.path.join(prefix, subdir)
os.makedirs(directory, exist_ok=True)
full_path = os.path.join(directory, f"{clean_caption}.png")
pil_image.save(full_path)
return full_path
def run():
args = parse_args()
prompt = args.prompt
batch_size = args.batch_size
guidance_scale = args.guidance_scale
base_x = args.base_x
base_y = args.base_y
respace = args.respace
prefix = args.prefix
upsample_temp = args.upsample_temp
_seed = args.seed
sr = args.sr
th.manual_seed(_seed)
cprint(f"Using seed {_seed}", "green")
if len(prompt) == 0:
cprint("Prompt is empty, exiting.", "red")
return
_device = th.device("cuda:0" if th.cuda.is_available() else "cpu")
cprint(f"Selected device: {_device}.", "white")
cprint("1. Creating model and diffusion.", "white")
model, diffusion, options = util.create_base_model_and_diffusion(
timestep_respacing=respace,
_device=_device,
)
model.eval()
cprint("1. Done.", "green")
cprint("Loading CLIP.", "white")
clip_model = create_clip_model(device=_device)
clip_model.image_encoder.load_state_dict(load_checkpoint('clip/image-enc', _device))
clip_model.text_encoder.load_state_dict(load_checkpoint('clip/text-enc', _device))
cond_fn = clip_model.cond_fn([prompt] * batch_size * 2, guidance_scale)
cprint("CLIP Loaded.", "green")
# Setup guidance function for CLIP model.
cprint("2. Running base GLIDE text2im model.", "white")
current_time = time.time()
# Create CLIP model.
samples = util.run_glide_text2im(
model=model,
diffusion=diffusion,
glide_base_opts=options,
prompt=prompt,
batch_size=batch_size,
guidance_scale=guidance_scale,
base_x=base_x,
base_y=base_y,
_device=_device,
cond_fn=cond_fn,
)
output_path = save_images(
batch=samples, caption=prompt, subdir="base", prefix=prefix
)
cprint(
f"2. Base model generations complete. Check {output_path} for generations.",
"green",
)
elapsed_time = time.time() - current_time
cprint(f"Elapsed time: {elapsed_time} seconds.", "green")
cprint("3. Loading GLIDE upsampling diffusion model.", "white")
model_up, diffusion_up, options_up = util.create_sr_model_and_diffusion(
timestep_respacing='fast27', _device=_device
)
model_up.eval()
cprint("3. Done.", "green")
sr_base_x = int(base_x * 4.0)
sr_base_y = int(base_y * 4.0)
if sr:
cprint(
f"4. Running GLIDE upsampling from {base_x}x{base_y} to {sr_base_x}x{sr_base_y}.",
"white",
)
current_time = time.time()
samples = util.run_glide_sr_text2im(
model_up=model_up,
diffusion_up=diffusion_up,
options_up=options_up,
samples=samples,
prompt=prompt,
batch_size=batch_size,
_device=_device,
upsample_temp=upsample_temp,
sr_x=sr_base_x,
sr_y=sr_base_y,
)
sr_output_path = save_images(
batch=samples, caption=prompt, subdir="sr", prefix=prefix
)
elapsed_time = time.time() - current_time
cprint(f"4.\tDone. Check {sr_output_path} for generations.", "green")
cprint(f"Elapsed time: {elapsed_time} seconds.", "green")
if __name__ == "__main__":
run()