forked from UK-MAC/CloverLeaf_MPI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadvec_cell_kernel.f90
240 lines (203 loc) · 8.06 KB
/
advec_cell_kernel.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
!Crown Copyright 2012 AWE.
!
! This file is part of CloverLeaf.
!
! CloverLeaf is free software: you can redistribute it and/or modify it under
! the terms of the GNU General Public License as published by the
! Free Software Foundation, either version 3 of the License, or (at your option)
! any later version.
!
! CloverLeaf is distributed in the hope that it will be useful, but
! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
! FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
! details.
!
! You should have received a copy of the GNU General Public License along with
! CloverLeaf. If not, see http://www.gnu.org/licenses/.
!> @brief Fortran cell advection kernel.
!> @author Wayne Gaudin
!> @details Performs a second order advective remap using van-Leer limiting
!> with directional splitting.
MODULE advec_cell_kernel_module
CONTAINS
SUBROUTINE advec_cell_kernel(x_min, &
x_max, &
y_min, &
y_max, &
dir, &
sweep_number,&
vector, &
vertexdx, &
vertexdy, &
volume, &
density1, &
energy1, &
mass_flux_x, &
vol_flux_x, &
mass_flux_y, &
vol_flux_y, &
pre_vol, &
post_vol, &
pre_mass, &
post_mass, &
advec_vol, &
post_ener, &
ener_flux )
IMPLICIT NONE
INTEGER :: x_min,x_max,y_min,y_max
INTEGER :: sweep_number,dir
INTEGER :: g_xdir=1,g_ydir=2
LOGICAL :: vector
REAL(KIND=8), DIMENSION(x_min-2:x_max+2,y_min-2:y_max+2) :: volume
REAL(KIND=8), DIMENSION(x_min-2:x_max+2,y_min-2:y_max+2) :: density1
REAL(KIND=8), DIMENSION(x_min-2:x_max+2,y_min-2:y_max+2) :: energy1
REAL(KIND=8), DIMENSION(x_min-2:x_max+3,y_min-2:y_max+2) :: vol_flux_x
REAL(KIND=8), DIMENSION(x_min-2:x_max+2,y_min-2:y_max+3) :: vol_flux_y
REAL(KIND=8), DIMENSION(x_min-2:x_max+3,y_min-2:y_max+2) :: mass_flux_x
REAL(KIND=8), DIMENSION(x_min-2:x_max+2,y_min-2:y_max+3) :: mass_flux_y
REAL(KIND=8), DIMENSION(x_min-2:x_max+3,y_min-2:y_max+3) :: pre_vol
REAL(KIND=8), DIMENSION(x_min-2:x_max+3,y_min-2:y_max+3) :: post_vol
REAL(KIND=8), DIMENSION(x_min-2:x_max+3,y_min-2:y_max+3) :: pre_mass
REAL(KIND=8), DIMENSION(x_min-2:x_max+3,y_min-2:y_max+3) :: post_mass
REAL(KIND=8), DIMENSION(x_min-2:x_max+3,y_min-2:y_max+3) :: advec_vol
REAL(KIND=8), DIMENSION(x_min-2:x_max+3,y_min-2:y_max+3) :: post_ener
REAL(KIND=8), DIMENSION(x_min-2:x_max+3,y_min-2:y_max+3) :: ener_flux
REAL(KIND=8), DIMENSION(x_min-2:x_max+3) :: vertexdx
REAL(KIND=8), DIMENSION(y_min-2:y_max+3) :: vertexdy
INTEGER :: j,k,upwind,donor,downwind,dif
REAL(KIND=8) :: sigma,sigmat,sigmav,sigmam,sigma3,sigma4
REAL(KIND=8) :: diffuw,diffdw,limiter
REAL(KIND=8), PARAMETER :: one_by_six=1.0_8/6.0_8
IF(dir.EQ.g_xdir) THEN
IF(sweep_number.EQ.1)THEN
DO k=y_min-2,y_max+2
DO j=x_min-2,x_max+2
pre_vol(j,k)=volume(j,k)+(vol_flux_x(j+1,k )-vol_flux_x(j,k)+vol_flux_y(j ,k+1)-vol_flux_y(j,k))
post_vol(j,k)=pre_vol(j,k)-(vol_flux_x(j+1,k )-vol_flux_x(j,k))
ENDDO
ENDDO
ELSE
DO k=y_min-2,y_max+2
DO j=x_min-2,x_max+2
pre_vol(j,k)=volume(j,k)+vol_flux_x(j+1,k)-vol_flux_x(j,k)
post_vol(j,k)=volume(j,k)
ENDDO
ENDDO
ENDIF
DO k=y_min,y_max
DO j=x_min,x_max+2
IF(vol_flux_x(j,k).GT.0.0)THEN
upwind =j-2
donor =j-1
downwind =j
dif =donor
ELSE
upwind =MIN(j+1,x_max+2)
donor =j
downwind =j-1
dif =upwind
ENDIF
sigmat=ABS(vol_flux_x(j,k))/pre_vol(donor,k)
sigma3=(1.0_8+sigmat)*(vertexdx(j)/vertexdx(dif))
sigma4=2.0_8-sigmat
sigma=sigmat
sigmav=sigmat
diffuw=density1(donor,k)-density1(upwind,k)
diffdw=density1(downwind,k)-density1(donor,k)
IF(diffuw*diffdw.GT.0.0)THEN
limiter=(1.0_8-sigmav)*SIGN(1.0_8,diffdw)*MIN(ABS(diffuw),ABS(diffdw)&
,one_by_six*(sigma3*ABS(diffuw)+sigma4*ABS(diffdw)))
ELSE
limiter=0.0
ENDIF
mass_flux_x(j,k)=vol_flux_x(j,k)*(density1(donor,k)+limiter)
sigmam=ABS(mass_flux_x(j,k))/(density1(donor,k)*pre_vol(donor,k))
diffuw=energy1(donor,k)-energy1(upwind,k)
diffdw=energy1(downwind,k)-energy1(donor,k)
IF(diffuw*diffdw.GT.0.0)THEN
limiter=(1.0_8-sigmam)*SIGN(1.0_8,diffdw)*MIN(ABS(diffuw),ABS(diffdw)&
,one_by_six*(sigma3*ABS(diffuw)+sigma4*ABS(diffdw)))
ELSE
limiter=0.0
ENDIF
ener_flux(j,k)=mass_flux_x(j,k)*(energy1(donor,k)+limiter)
ENDDO
ENDDO
DO k=y_min,y_max
DO j=x_min,x_max
pre_mass(j,k)=density1(j,k)*pre_vol(j,k)
post_mass(j,k)=pre_mass(j,k)+mass_flux_x(j,k)-mass_flux_x(j+1,k)
post_ener(j,k)=(energy1(j,k)*pre_mass(j,k)+ener_flux(j,k)-ener_flux(j+1,k))/post_mass(j,k)
advec_vol(j,k)=pre_vol(j,k)+vol_flux_x(j,k)-vol_flux_x(j+1,k)
density1(j,k)=post_mass(j,k)/advec_vol(j,k)
energy1(j,k)=post_ener(j,k)
ENDDO
ENDDO
ELSEIF(dir.EQ.g_ydir) THEN
IF(sweep_number.EQ.1)THEN
DO k=y_min-2,y_max+2
DO j=x_min-2,x_max+2
pre_vol(j,k)=volume(j,k)+(vol_flux_y(j ,k+1)-vol_flux_y(j,k)+vol_flux_x(j+1,k )-vol_flux_x(j,k))
post_vol(j,k)=pre_vol(j,k)-(vol_flux_y(j ,k+1)-vol_flux_y(j,k))
ENDDO
ENDDO
ELSE
DO k=y_min-2,y_max+2
DO j=x_min-2,x_max+2
pre_vol(j,k)=volume(j,k)+vol_flux_y(j ,k+1)-vol_flux_y(j,k)
post_vol(j,k)=volume(j,k)
ENDDO
ENDDO
ENDIF
DO k=y_min,y_max+2
DO j=x_min,x_max
IF(vol_flux_y(j,k).GT.0.0)THEN
upwind =k-2
donor =k-1
downwind =k
dif =donor
ELSE
upwind =MIN(k+1,y_max+2)
donor =k
downwind =k-1
dif =upwind
ENDIF
sigmat=ABS(vol_flux_y(j,k))/pre_vol(j,donor)
sigma3=(1.0_8+sigmat)*(vertexdy(k)/vertexdy(dif))
sigma4=2.0_8-sigmat
sigma=sigmat
sigmav=sigmat
diffuw=density1(j,donor)-density1(j,upwind)
diffdw=density1(j,downwind)-density1(j,donor)
IF(diffuw*diffdw.GT.0.0)THEN
limiter=(1.0_8-sigmav)*SIGN(1.0_8,diffdw)*MIN(ABS(diffuw),ABS(diffdw)&
,one_by_six*(sigma3*ABS(diffuw)+sigma4*ABS(diffdw)))
ELSE
limiter=0.0
ENDIF
mass_flux_y(j,k)=vol_flux_y(j,k)*(density1(j,donor)+limiter)
sigmam=ABS(mass_flux_y(j,k))/(density1(j,donor)*pre_vol(j,donor))
diffuw=energy1(j,donor)-energy1(j,upwind)
diffdw=energy1(j,downwind)-energy1(j,donor)
IF(diffuw*diffdw.GT.0.0)THEN
limiter=(1.0_8-sigmam)*SIGN(1.0_8,diffdw)*MIN(ABS(diffuw),ABS(diffdw)&
,one_by_six*(sigma3*ABS(diffuw)+sigma4*ABS(diffdw)))
ELSE
limiter=0.0
ENDIF
ener_flux(j,k)=mass_flux_y(j,k)*(energy1(j,donor)+limiter)
ENDDO
ENDDO
DO k=y_min,y_max
DO j=x_min,x_max
pre_mass(j,k)=density1(j,k)*pre_vol(j,k)
post_mass(j,k)=pre_mass(j,k)+mass_flux_y(j,k)-mass_flux_y(j,k+1)
post_ener(j,k)=(energy1(j,k)*pre_mass(j,k)+ener_flux(j,k)-ener_flux(j,k+1))/post_mass(j,k)
advec_vol(j,k)=pre_vol(j,k)+vol_flux_y(j,k)-vol_flux_y(j,k+1)
density1(j,k)=post_mass(j,k)/advec_vol(j,k)
energy1(j,k)=post_ener(j,k)
ENDDO
ENDDO
ENDIF
END SUBROUTINE advec_cell_kernel
END MODULE advec_cell_kernel_module