-
Notifications
You must be signed in to change notification settings - Fork 9
/
cuda.cpp
310 lines (282 loc) · 8.12 KB
/
cuda.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
#include <stdio.h>
#include <memory.h>
#include <string.h>
#include <unistd.h>
#include <map>
// include thrust
#ifndef __cplusplus
#include <thrust/version.h>
#include <thrust/remove.h>
#include <thrust/device_vector.h>
#include <thrust/iterator/constant_iterator.h>
#else
#include <ctype.h>
#endif
#include "miner.h"
#include "nvml.h"
#include "cuda_runtime.h"
#ifdef __cplusplus
/* miner.h functions are declared in C type, not C++ */
extern "C" {
#endif
// CUDA Devices on the System
int cuda_num_devices()
{
int version = 0, GPU_N = 0;
cudaError_t err = cudaDriverGetVersion(&version);
if (err != cudaSuccess) {
applog(LOG_ERR, "Unable to query CUDA driver version! Is an nVidia driver installed?");
exit(1);
}
if (version < CUDART_VERSION) {
applog(LOG_ERR, "Your system does not support CUDA %d.%d API!",
CUDART_VERSION / 1000, (CUDART_VERSION % 1000) / 10);
exit(1);
}
err = cudaGetDeviceCount(&GPU_N);
if (err != cudaSuccess) {
applog(LOG_ERR, "Unable to query number of CUDA devices! Is an nVidia driver installed?");
exit(1);
}
return GPU_N;
}
int cuda_version()
{
return (int) CUDART_VERSION;
}
void cuda_devicenames()
{
cudaError_t err;
int GPU_N;
err = cudaGetDeviceCount(&GPU_N);
if (err != cudaSuccess)
{
applog(LOG_ERR, "Unable to query number of CUDA devices! Is an nVidia driver installed?");
exit(1);
}
if (opt_n_threads)
GPU_N = min(MAX_GPUS, opt_n_threads);
for (int i=0; i < GPU_N; i++)
{
char vendorname[32] = { 0 };
int dev_id = device_map[i];
cudaDeviceProp props;
cudaGetDeviceProperties(&props, dev_id);
device_sm[dev_id] = (props.major * 100 + props.minor * 10);
device_mpcount[dev_id] = (short) props.multiProcessorCount;
if (device_name[dev_id]) {
free(device_name[dev_id]);
device_name[dev_id] = NULL;
}
#ifdef USE_WRAPNVML
if (gpu_vendor((uint8_t)props.pciBusID, vendorname) > 0 && strlen(vendorname)) {
device_name[dev_id] = (char*) calloc(1, strlen(vendorname) + strlen(props.name) + 2);
if (!strncmp(props.name, "GeForce ", 8))
sprintf(device_name[dev_id], "%s %s", vendorname, &props.name[8]);
else
sprintf(device_name[dev_id], "%s %s", vendorname, props.name);
} else
#endif
device_name[dev_id] = strdup(props.name);
}
}
void cuda_print_devices()
{
int ngpus = cuda_num_devices();
cuda_devicenames();
for (int n=0; n < ngpus; n++) {
int dev_id = device_map[n % MAX_GPUS];
cudaDeviceProp props;
cudaGetDeviceProperties(&props, dev_id);
if (!opt_n_threads || n < opt_n_threads) {
fprintf(stderr, "GPU #%d: SM %d.%d %s @ %.0f MHz (MEM %.0f)\n", dev_id,
props.major, props.minor, device_name[dev_id],
(double) props.clockRate/1000,
(double) props.memoryClockRate/1000);
#ifdef USE_WRAPNVML
if (opt_debug) nvml_print_device_info(dev_id);
#ifdef WIN32
if (opt_debug) {
unsigned int devNum = nvapi_devnum(dev_id);
nvapi_pstateinfo(devNum);
}
#endif
#endif
}
}
}
void cuda_shutdown()
{
// require gpu init first
//if (thr_info != NULL)
// cudaDeviceSynchronize();
cudaDeviceReset();
}
static bool substringsearch(const char *haystack, const char *needle, int &match)
{
int hlen = (int) strlen(haystack);
int nlen = (int) strlen(needle);
for (int i=0; i < hlen; ++i)
{
if (haystack[i] == ' ') continue;
int j=0, x = 0;
while(j < nlen)
{
if (haystack[i+x] == ' ') {++x; continue;}
if (needle[j] == ' ') {++j; continue;}
if (needle[j] == '#') return ++match == needle[j+1]-'0';
if (tolower(haystack[i+x]) != tolower(needle[j])) break;
++j; ++x;
}
if (j == nlen) return true;
}
return false;
}
// CUDA Gerät nach Namen finden (gibt Geräte-Index zurück oder -1)
int cuda_finddevice(char *name)
{
int num = cuda_num_devices();
int match = 0;
for (int i=0; i < num; ++i)
{
cudaDeviceProp props;
if (cudaGetDeviceProperties(&props, i) == cudaSuccess)
if (substringsearch(props.name, name, match)) return i;
}
return -1;
}
// since 1.7
uint32_t cuda_default_throughput(int thr_id, uint32_t defcount)
{
//int dev_id = device_map[thr_id % MAX_GPUS];
uint32_t throughput = gpus_intensity[thr_id] ? gpus_intensity[thr_id] : defcount;
if (gpu_threads > 1 && throughput == defcount) throughput /= (gpu_threads-1);
if (api_thr_id != -1) api_set_throughput(thr_id, throughput);
//gpulog(LOG_INFO, thr_id, "throughput %u", throughput);
return throughput;
}
// since 1.8.3
double throughput2intensity(uint32_t throughput)
{
double intensity = 0.;
uint32_t ws = throughput;
uint8_t i = 0;
while (ws > 1 && i++ < 32)
ws = ws >> 1;
intensity = (double) i;
if (i && ((1U << i) < throughput)) {
intensity += ((double) (throughput-(1U << i)) / (1U << i));
}
return intensity;
}
// if we use 2 threads on the same gpu, we need to reinit the threads
void cuda_reset_device(int thr_id, bool *init)
{
int dev_id = device_map[thr_id % MAX_GPUS];
cudaSetDevice(dev_id);
if (init != NULL) {
// with init array, its meant to be used in algo's scan code...
for (int i=0; i < MAX_GPUS; i++) {
if (device_map[i] == dev_id) {
init[i] = false;
}
}
// force exit from algo's scan loops/function
restart_threads();
cudaDeviceSynchronize();
while (cudaStreamQuery(NULL) == cudaErrorNotReady)
usleep(1000);
}
cudaDeviceReset();
if (opt_cudaschedule >= 0) {
cudaSetDeviceFlags((unsigned)(opt_cudaschedule & cudaDeviceScheduleMask));
} else {
cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync);
}
cudaDeviceSynchronize();
}
// return free memory in megabytes
int cuda_available_memory(int thr_id)
{
int dev_id = device_map[thr_id % MAX_GPUS];
#if defined(_WIN32) && defined(USE_WRAPNVML)
uint64_t tot64 = 0, free64 = 0;
// cuda (6.5) one can crash on pascal and dont handle 8GB
nvapiMemGetInfo(dev_id, &free64, &tot64);
return (int) (free64 / (1024));
#else
size_t mtotal = 0, mfree = 0;
cudaSetDevice(dev_id);
cudaDeviceSynchronize();
cudaMemGetInfo(&mfree, &mtotal);
return (int) (mfree / (1024 * 1024));
#endif
}
// Check (and reset) last cuda error, and report it in logs
void cuda_log_lasterror(int thr_id, const char* func, int line)
{
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess && !opt_quiet)
gpulog(LOG_WARNING, thr_id, "%s:%d %s", func, line, cudaGetErrorString(err));
}
// Clear any cuda error in non-cuda unit (.c/.cpp)
void cuda_clear_lasterror()
{
cudaGetLastError();
}
#ifdef __cplusplus
} /* extern "C" */
#endif
int cuda_gpu_info(struct cgpu_info *gpu)
{
cudaDeviceProp props;
if (cudaGetDeviceProperties(&props, gpu->gpu_id) == cudaSuccess) {
gpu->gpu_clock = (uint32_t) props.clockRate;
gpu->gpu_memclock = (uint32_t) props.memoryClockRate;
gpu->gpu_mem = (uint64_t) (props.totalGlobalMem / 1024); // kB
#if defined(_WIN32) && defined(USE_WRAPNVML)
// required to get mem size > 4GB (size_t too small for bytes on 32bit)
nvapiMemGetInfo(gpu->gpu_id, &gpu->gpu_memfree, &gpu->gpu_mem); // kB
#endif
gpu->gpu_mem = gpu->gpu_mem / 1024; // MB
return 0;
}
return -1;
}
// Zeitsynchronisations-Routine von cudaminer mit CPU sleep
// Note: if you disable all of these calls, CPU usage will hit 100%
typedef struct { double value[8]; } tsumarray;
cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id)
{
cudaError_t result = cudaSuccess;
if (abort_flag)
return result;
if (situation >= 0)
{
static std::map<int, tsumarray> tsum;
double a = 0.95, b = 0.05;
if (tsum.find(situation) == tsum.end()) { a = 0.5; b = 0.5; } // faster initial convergence
double tsync = 0.0;
double tsleep = 0.95 * tsum[situation].value[thr_id];
if (cudaStreamQuery(stream) == cudaErrorNotReady)
{
usleep((useconds_t)(1e6*tsleep));
struct timeval tv_start, tv_end;
gettimeofday(&tv_start, NULL);
result = cudaStreamSynchronize(stream);
gettimeofday(&tv_end, NULL);
tsync = 1e-6 * (tv_end.tv_usec-tv_start.tv_usec) + (tv_end.tv_sec-tv_start.tv_sec);
}
if (tsync >= 0) tsum[situation].value[thr_id] = a * tsum[situation].value[thr_id] + b * (tsleep+tsync);
}
else
result = cudaStreamSynchronize(stream);
return result;
}
void cudaReportHardwareFailure(int thr_id, cudaError_t err, const char* func)
{
struct cgpu_info *gpu = &thr_info[thr_id].gpu;
gpu->hw_errors++;
gpulog(LOG_ERR, thr_id, "%s %s", func, cudaGetErrorString(err));
sleep(1);
}