-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvae.py
225 lines (177 loc) · 7.33 KB
/
vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
from __future__ import print_function
import argparse
import torch
import torch.utils.data
from torch import nn, optim
from torch.autograd import Variable
from torch.nn import functional as F
from torchvision import datasets, transforms
from torchvision.utils import save_image
import torch.onnx
from logger import Logger
# Environmental variables only useful for GPU enabled systems.
# Feel free to remove / comment out if you don't have GPU's
import os
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]="1"
normalize_to_zero_one = lambda x: (x + 1.) / 2
parser = argparse.ArgumentParser(description='VAE MNIST Example')
parser.add_argument('--batch-size', type=int, default=128, metavar='N',
help='input batch size for training (default: 128)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='enables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
# Set the logger
logger = Logger('./logs')
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=True, download=True,
transform=transforms.ToTensor()),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=False, transform=transforms.ToTensor()),
batch_size=args.batch_size, shuffle=True, **kwargs)
class VAE(nn.Module):
def __init__(self):
super(VAE, self).__init__()
self.fc1 = nn.Linear(784, 300)
self.fc21 = nn.Linear(300, 50)
#self.fc21 = nn.Linear(300, 50)
self.fc22 = nn.Linear(300, 50)
self.fc3 = nn.Linear(50, 300)
self.fc4 = nn.Linear(300, 784)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
def encode(self, x):
h1 = self.relu(self.fc1(x))
return self.fc21(h1), self.fc22(h1)
def reparameterize(self, mu, logvar):
if self.training:
std = logvar.mul(0.5).exp_()
eps = Variable(std.data.new(std.size()).normal_())
return eps.mul(std).add_(mu)
else:
return mu
def decode(self, z):
h3 = self.relu(self.fc3(z))
return self.sigmoid(self.fc4(h3))
def forward(self, x):
mu, logvar = self.encode(x.view(-1, 784))
z = self.reparameterize(mu, logvar)
return self.decode(z), mu, logvar
model = VAE()
if args.cuda:
model.cuda()
optimizer = optim.Adam(model.parameters(), lr=1e-5)
# Reconstruction + KL divergence losses summed over all elements and batch
def loss_function(recon_x, x, mu, logvar):
BCE = F.binary_cross_entropy(recon_x, x.view(-1, 784), size_average=False)
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return BCE + KLD
def train(epoch):
model.train()
train_loss = 0
for batch_idx, (data, _) in enumerate(train_loader):
data = Variable(data)
if args.cuda:
data = data.cuda()
optimizer.zero_grad()
recon_batch, mu, logvar = model(data)
loss = loss_function(recon_batch, data, mu, logvar)
loss.backward()
train_loss += loss.data[0]
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader),
loss.data[0] / len(data)))
print('====> Epoch: {} Average loss: {:.4f}'.format(
epoch, train_loss / len(train_loader.dataset)))
def test(epoch):
"""
Test phase of training the neural networks f(x) and g(z)
:param epoch: Epoch number used for tracking current iteration test is being performed under
:return: None
"""
model.eval()
test_loss = 0
for i, (data, _) in enumerate(test_loader):
if args.cuda:
data = data.cuda()
data = Variable(data)
recon_batch, mu, logvar = model(data)
test_loss += loss_function(recon_batch, data, mu, logvar).data[0]
if i == 0:
n = min(data.size(0), 8)
comparison = torch.cat([data[:n],
recon_batch.view(args.batch_size, 1, 28, 28)[:n]])
save_image(comparison.data.cpu(),
'results/reconstruction_' + str(epoch) + '.png', nrow=n)
torch.onnx.export(model, data, f='results/test_vae_50z.onnx', verbose=True)
test_loss /= len(test_loader.dataset)
print('====> Test set loss: {:.4f}'.format(test_loss))
def anomaly_test(epoch: int, nrow: int):
"""
Measure the probability of a data point being an anomaly or not.
:param epoch: Epoch number used for tracking current iteration test is being performed under
:param nrow:
:return:
"""
model.eval()
anom_loss = 0
BCE_loss = 0
for i, (data, _) in enumerate(test_loader):
if args.cuda:
data = data.cuda()
data = Variable(data)
save_image(data.data.cpu(),
'results/norm_' + str(epoch) + '.png', nrow=nrow)
# add some noise
anom_data = add_gaussian_noise(data, 0, 0.5)
save_image(anom_data.data.cpu(),
'results/anom_' + str(epoch) + '.png', nrow=nrow)
recon_batch, mu, logvar = model(anom_data)
anom_loss += loss_function(recon_batch, data, mu, logvar).data[0]
BCE_loss += F.binary_cross_entropy(recon_batch, data.view(-1, 784), size_average=False)
if i == 0:
n = min(data.size(0), 8)
comparison = torch.cat([anom_data[:n],
recon_batch.view(args.batch_size, 1, 28, 28)[:n]])
save_image(comparison.data.cpu(),
'results/anom_reconstruction_' + str(epoch) + '.png', nrow=n)
anom_loss /= len(test_loader.dataset)
print('====> Anomaly set loss: {:.4f}'.format(anom_loss))
BCE_loss /= len(test_loader.dataset)
print('====> BCE set loss: {:.4f}'.format(BCE_loss))
return
def add_gaussian_noise(tensor, mean, stddev):
"""
Add noise to a tensor
:param tensor: PyTorch Tensor Object
:param mean: mean parameter of normal distribution used for noise generation
:param stddev: Standard deviation of normal distribution used for noise generation
:return: PyTorch tensor with added noise
"""
noise = Variable(tensor.data.new(tensor.size()).normal_(mean, stddev))
return tensor + noise
for epoch in range(1, args.epochs + 1):
train(epoch)
test(epoch)
anomaly_test(epoch, 1)
sample = Variable(torch.randn(64, 50))
if args.cuda:
sample = sample.cuda()
sample = model.decode(sample).cpu()
save_image(sample.data.view(64, 1, 28, 28),
'results/sample_' + str(epoch) + '.png')