forked from neonrights/emoji_predictor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
emoji_cnn.py
238 lines (193 loc) · 8.83 KB
/
emoji_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import tensorflow as tf
import numpy as np
import os
import pickle
import glob
from loader import *
class EmojiCNN:
def __init__(self, sess, data, name, kernel_widths, kernel_filters, batch_size=100, embedding=50, layers=list(), weighted=False, resample=False, restore=None):
self.sess = sess
self.name = name
self.loader = WordLoader(data=data, batch_size=batch_size, glove=embedding, resample=resample)
self.use_weights = weighted
try: # to restore object if desired
if not restore:
raise IOError
if os.path.isfile("tmp_%s/%s.meta" % (self.name, restore)):
print("attempting to restore model from %s" % restore)
meta_file = "tmp_%s/%s.meta" % (self.name, restore)
else:
# get most recent file
print("attempting to restore model from latest checkpoint")
files = glob.glob("tmp_%s/*.meta" % self.name)
if not files:
raise IOError
files.sort(key=lambda x: -os.path.getmtime(x))
meta_file = files[0]
checkpoint_name = meta_file.split('.')[0]
self.saver = tf.train.import_meta_graph(meta_file)
self.saver.restore(self.sess, checkpoint_name)
# restore class variables
if os.path.isfile("tmp_%s/loss.pkl" % self.name):
with open("tmp_%s/loss.pkl" % self.name, 'r') as f:
self.train_loss, self.valid_loss = pickle.load(f)
else:
self.train_loss = list()
self.valid_loss = list()
graph = tf.get_default_graph()
self.input_words = graph.get_tensor_by_name('%s/word_ids:0' % self.name)
self.true_emojis = graph.get_tensor_by_name('%s/emoji_ids:0' % self.name)
self.weights = graph.get_tensor_by_name('%s/weights:0' % self.name)
self.keep_rate = graph.get_tensor_by_name('%s/full/keep_rate:0' % self.name)
self.output = graph.get_tensor_by_name('%s/output:0' % self.name)
self.prediction = graph.get_tensor_by_name('%s/prediction:0' % self.name)
self.loss = graph.get_tensor_by_name('%s/loss:0' % self.name)
self.global_step = graph.get_tensor_by_name('%s/global_step:0' % self.name)
self.trainer = graph.get_operation_by_name('%s/trainer' % self.name)
print("restored from %s" % checkpoint_name)
except (IOError, tf.errors.NotFoundError) as e: # initialize object as normal
if restore: # if failed to restore, reset session
print("failed to restore model")
#tf.reset_default_graph() clear graph
print("building model")
with tf.variable_scope(self.name):
# embed words
self.input_words = tf.placeholder(tf.int64, [None, None], name='word_ids')
word_embeds = tf.get_variable("word_embedding", initializer=tf.constant(self.loader.glove_embed, dtype=tf.float32))
embed_words = tf.nn.embedding_lookup(word_embeds, self.input_words)
# initializers for weights and biases
trnc_norm_init = tf.random_uniform_initializer(minval=-0.05, maxval=0.05)
cnst_init = tf.constant_initializer(0.1)
# create convolutions
with tf.variable_scope('conv'):
outputs = list()
for width, filters in zip(kernel_widths, kernel_filters):
kernel = tf.get_variable(name="kernel_%s_%s" % (width, filters),
shape=[width, embedding, filters], initializer=trnc_norm_init)
bias = tf.get_variable(name="kernel_bias_%s_%s" % (width, filters),
shape=[filters], initializer=cnst_init)
conv = tf.nn.conv1d(embed_words, kernel, 1, 'VALID') + bias
pool = tf.reduce_max(conv, axis=1)
outputs.append(pool)
cnn_output = tf.nn.relu(tf.concat(outputs, axis=1))
# create fully connected layer
with tf.variable_scope('full'):
self.keep_rate = tf.placeholder(tf.float32, name='keep_rate')
hidden = tf.nn.dropout(cnn_output, keep_prob=self.keep_rate, name="initial_input")
for i, dim in enumerate(layers):
weights = tf.get_variable(name="hidden_%i_weight" % (i+1),
shape=[hidden.get_shape()[1], dim], initializer=trnc_norm_init)
bias = tf.get_variable(name="hidden_%i_bias" % (i+1),
shape=[dim], initializer=cnst_init)
hidden = tf.nn.relu(tf.matmul(hidden, weights) + bias)
hidden = tf.nn.dropout(hidden, keep_prob=self.keep_rate, name="hidden_%s_output" % (i+1))
# output emoji softmax prediction
self.true_emojis = tf.placeholder(tf.int64, [None], name='emoji_ids')
true_probs = tf.one_hot(self.true_emojis, self.loader.emoji_vocab_size)
weight = tf.get_variable(name="softmax_weight",
shape=[hidden.get_shape()[1], self.loader.emoji_vocab_size],
initializer=trnc_norm_init)
bias = tf.get_variable(name="softmax_bias", shape=[self.loader.emoji_vocab_size],
initializer=cnst_init)
self.output = tf.nn.relu(tf.matmul(hidden, weight) + bias, name='output')
self.prediction = tf.argmax(tf.nn.softmax(self.output), axis=1, name='prediction')
# loss metric
self.weights = tf.placeholder(tf.float32, None, name='weights')
unweighted_loss = tf.nn.softmax_cross_entropy_with_logits(
labels=true_probs, logits=self.output)
self.loss = tf.reduce_mean(self.weights * unweighted_loss, name='loss')
# optimizer and tracking
self.global_step = tf.get_variable(name='global_step',
initializer=tf.constant(0, dtype=tf.int64), trainable=False)
self.trainer = tf.train.AdamOptimizer().minimize(self.loss,
global_step=self.global_step, name='trainer')
# ready to go
self.sess.run(tf.global_variables_initializer())
self.saver = tf.train.Saver()
self.train_loss = list()
self.valid_loss = list()
print("model built")
# train model
def train(self, epoch):
self.loader.reset_batch(dataset='train')
batch_count = self.loader.batches[0]
step = self.sess.run(self.global_step) % batch_count
check = (batch_count / 1000) * 100
for i in xrange(batch_count):
data = self.loader.next_batch(dataset='train')
if self.use_weights:
weights = self.loader.weights[data[1]]
weights *= np.sqrt(self.loader.batch_size) / np.linalg.norm(weights)
else:
weights = np.ones(self.loader.batch_size)
if data is None:
print("training prematurely stopped")
break
feed_dict = {
self.input_words : data[0],
self.true_emojis : data[1],
self.keep_rate : 0.5,
self.weights : weights
}
_, loss, step = self.sess.run([self.trainer, self.loss, self.global_step], feed_dict=feed_dict)
step %= batch_count
if (step+1) % check == 0:
print("epoch %d: %d/%d, test loss %2.6f" % (epoch, step+1, self.loader.batches[0], loss))
step = self.sess.run(self.global_step) % batch_count
# test model on specified dataset
def test(self, dataset):
self.loader.reset_batch(dataset=dataset)
total_loss = 0
batch_count = self.loader.batches[self.loader.DATA2ID[dataset]]
for i in xrange(batch_count):
data = self.loader.next_batch(dataset=dataset)
if data is None:
print("testing prematurely stopped")
break
feed_dict = {
self.input_words : data[0],
self.true_emojis : data[1],
self.keep_rate : 1.0,
self.weights : np.ones(self.loader.batch_size)
}
total_loss += self.sess.run(self.loss, feed_dict=feed_dict)
return float(total_loss) / batch_count
def predict(self, sentence):
if type(sentence) is str:
sentence = self.loader.sentence2tensor(sentence)
feed_dict = {
self.input_words : sentence,
self.keep_rate : 1.0
}
predicted = self.sess.run(self.prediction, feed_dict=feed_dict)
return [self.loader.id2emoji(predict+1) for predict in predicted]
def save(self, key):
if not os.path.isdir('tmp_%s' % self.name):
os.mkdir('tmp_%s' % self.name)
# pickle picklable self objects
if self.train_loss and self.valid_loss:
with open('tmp_%s/loss.pkl' % self.name, 'w+') as f:
pickle.dump((self.train_loss, self.valid_loss), f)
self.saver.save(self.sess, "tmp_%s/%s" % (self.name, key))
print("saved %s" % key)
# train, save, and test model
def run(self, epochs=100):
total_steps = epochs * self.loader.batches[0]
step = self.sess.run(self.global_step)
if step == 0:
self.train_loss.append(self.test(dataset='train'))
self.valid_loss.append(self.test(dataset='validation'))
print("initial train and validation loss: %2.6f %2.6f" % (self.train_loss[0], self.valid_loss[0]))
while step < total_steps:
epoch = step / self.loader.batches[0]
self.train(epoch+1)
self.train_loss.append(self.test(dataset='train'))
self.valid_loss.append(self.test(dataset='validation'))
print("epoch %d: train and validation loss, %2.6f %2.6f" % (epoch+1, self.train_loss[-1], self.valid_loss[-1]))
self.save('epoch%d' % (epoch+1))
step = self.sess.run(self.global_step)
assert((step % self.loader.batches[0]) == 0)
self.save('final')
test_loss = self.test(dataset='test')
print("final test loss %2.6f" % test_loss)
return self.train_loss, self.valid_loss