-
Notifications
You must be signed in to change notification settings - Fork 103
/
Copy pathtest_fem.py
229 lines (191 loc) · 8.27 KB
/
test_fem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# test for fem.py
import unittest
import numpy as np
import pyeit.eit.fem
from pyeit.eit.protocol import PyEITProtocol, build_meas_pattern_std
from pyeit.mesh import PyEITMesh
def _assemble(ke, tri, perm, n):
# assemble global stiffness matrix
k = np.zeros((n, n), dtype=perm.dtype)
for ei in range(ke.shape[0]):
k_local = ke[ei]
pe = perm[ei]
no = tri[ei, :]
ij = np.ix_(no, no)
k[ij] += k_local * pe
k[0, :] = 0.0
k[:, 0] = 0.0
k[0, 0] = 1.0
return k
def _meas_pattern(ex_line, n_el, dist, parser):
"""a simple voltage meter (meas_pattern)"""
meas_current = parser == "meas_current"
rel_electrode = parser in ["fmmu", "rotate_meas"]
i0 = ex_line[0] if rel_electrode else 0
m = np.arange(i0, i0 + n_el) % n_el
n = np.arange(i0 + dist, i0 + dist + n_el) % n_el
v = np.array([[ni, mi] for ni, mi in zip(n, m)])
keep = [~np.any(np.isin(vi, ex_line), axis=0) for vi in v]
return v if meas_current else v[keep]
def _mesh_obj():
"""build a simple, determinant mesh model/dataset"""
node = np.array([[0.13, 0.15], [0.2, 0.2], [0.1, 0.1], [0.18, 0.12]])
element = np.array([[0, 2, 3], [0, 3, 1]])
# assemble uses perm.dtype, perm MUST not be np.int (result rounding error in K)
perm = np.array([3.0, 1.0])
el_pos = np.array([1, 2])
# new mesh structure or dataset
return PyEITMesh(node=node, element=element, perm=perm, el_pos=el_pos, ref_node=3)
def _mesh_obj_large():
"""build a large, random mesh model/dataset"""
n_tri, n_pts = 400, 1000
node = np.random.randn(n_pts, 2)
element = np.array([np.random.permutation(n_pts)[:3] for _ in range(n_tri)])
perm = np.random.randn(n_tri)
np.random.seed(0)
el_pos = np.random.permutation(n_pts)[:16]
return PyEITMesh(node=node, element=element, perm=perm, el_pos=el_pos, ref_node=0)
def _protocol_obj(ex_mat, n_el, step_meas, parser_meas):
meas_mat, keep_ba = build_meas_pattern_std(ex_mat, n_el, step_meas, parser_meas)
return PyEITProtocol(ex_mat, meas_mat, keep_ba)
class TestFem(unittest.TestCase):
def test_ke_triangle(self):
"""test ke calculation using triangle (2D)"""
pts = np.array([[0, 1], [0, 0], [1, 0]])
tri = np.array([[0, 1, 2]])
k_truth = np.array([[1, -1, 0], [-1, 2, -1], [0, -1, 1]])
area = 0.5
ke = pyeit.eit.fem.calculate_ke(pts, tri)
self.assertTrue(ke.shape == (1, 3, 3))
self.assertTrue(np.allclose(ke[0], k_truth * area))
def test_ke_tetrahedron(self):
"""test ke calculation using tetrahedron (3D)"""
pts = np.array([[0, 0, 0], [0, 0, 1], [0, 1, 0], [1, 0, 0]])
tri = np.array([[0, 1, 2, 3]])
k_truth = np.array(
[[3, -1, -1, -1], [-1, 1, 0, 0], [-1, 0, 1, 0], [-1, 0, 0, 1]]
)
volumn = 1.0 / 6.0
ke = pyeit.eit.fem.calculate_ke(pts, tri)
self.assertTrue(ke.shape == (1, 4, 4))
self.assertTrue(np.allclose(ke[0], k_truth * volumn))
def test_assemble(self):
"""test assembling coefficients matrix, {se, perm} -> K"""
np.random.seed(0)
n, ne = 10, 42
pts = np.arange(n)
tri = np.array([pts[np.random.permutation(n)[:3]] for _ in range(ne)])
perm = np.random.randn(ne)
se = np.random.randn(ne, 3, 3)
k_truth = _assemble(se, tri, perm, n)
k = pyeit.eit.fem.assemble(se, tri, perm, n).toarray()
self.assertTrue(np.allclose(k, k_truth))
def test_meas_pattern(self):
"""test measurement pattern/voltage meter"""
# @libuenyan shoul be in test_eit.py or test_protocol.py
n_el = 16
np.random.seed(42)
mesh = _mesh_obj_large()
for parser in ["meas_current", "fmmu", "rotate_meas"]:
ex_lines = [np.random.permutation(n_el)[:2] for _ in range(10)]
for ex_line in ex_lines:
ex_mat = np.array([ex_line])
# build protocol dict/dataset
protocol = _protocol_obj(ex_mat, n_el, 1, parser)
fwd = pyeit.eit.fem.EITForward(mesh, protocol)
diff_truth = _meas_pattern(ex_line, n_el, 1, parser)
diff = fwd.protocol.meas_mat[:, :-1]
assert np.allclose(diff, diff_truth)
def test_subtract_row(self):
"""calculate f[diff_op[0]] - f[diff_op[1]]"""
n_exe = 10
n_el = 16
v = np.random.randn(n_el)
diff_pairs = np.array([np.random.permutation(n_el)[:2] for _ in range(n_exe)])
vd_truth = np.array([v[d[0]] - v[d[1]] for d in diff_pairs])
vd = pyeit.eit.fem.subtract_row(v, diff_pairs)
self.assertTrue(vd_truth.size == vd.size)
self.assertTrue(np.allclose(vd.ravel(), vd_truth.ravel()))
def test_subtract_row_vectorized(self):
"""calculate f[exc_id, diff_op[0]] - f[exc_id, diff_op[1]]"""
n_el = 16
n_meas = 16
n_exc = 3
n_meas_tot = n_exc * n_meas
v = np.full((n_exc, n_el), np.random.randn(n_el))
# build measurement pattern, [m, n, exc_id] per row
diff_pairs = []
for i in range(n_exc):
for _ in range(n_meas):
diff_pairs.append(np.hstack([np.random.permutation(n_el)[:2], i]))
meas_pattern = np.vstack(diff_pairs)
print(meas_pattern)
# calculate ground truth
vd_truth = np.zeros((n_meas_tot,))
for i in range(n_meas_tot):
v_exc = v[meas_pattern[i, 2]]
vd_truth[i] = v_exc[meas_pattern[i, 0]] - v_exc[meas_pattern[i, 1]]
vd = pyeit.eit.fem.subtract_row_vectorized(v, meas_pattern)
self.assertTrue(vd_truth.size == vd.size)
self.assertTrue(np.allclose(vd.ravel(), vd_truth.ravel()))
def test_k(self):
"""test Forward.kg using a simple, determinant mesh structure"""
k_truth = np.array(
[
[3.7391, -0.1521, -1.5, 0.0],
[-0.1521, 0.3695, 0.0, 0.0],
[-1.5, 0.0, 1.5, 0.0],
[0.0, 0.0, 0.0, 1.0],
]
)
mesh = _mesh_obj()
fwd = pyeit.eit.fem.Forward(mesh)
k = fwd.kg.toarray() # sparse COO to dense
self.assertTrue(np.allclose(k, k_truth, rtol=0.01))
def test_solve(self):
"""test solve using a simple mesh structure"""
mesh = _mesh_obj()
f_truth = np.array([-0.27027027, 2.59459459, -0.93693694, 0.0])
fwd = pyeit.eit.fem.Forward(mesh)
ex_line = np.array([0, 1])
f = fwd.solve(ex_line)
self.assertTrue(np.allclose(f, f_truth))
# test without passing any argument
f = fwd.solve()
self.assertTrue(isinstance(f, np.ndarray))
def test_solve_eit(self):
"""test solve_eit using a simple mesh structure"""
mesh = _mesh_obj()
el_pos = mesh.el_pos
ex_mat = np.array([[0, 1], [1, 0]])
protocol = _protocol_obj(ex_mat, mesh.n_el, 1, "meas_current")
fwd = pyeit.eit.fem.EITForward(mesh, protocol)
# include voltage differences on driving electrodes
v = fwd.solve_eit()
f_truth = np.array([-0.27027027, 2.59459459, -0.93693694, 0.0])
vdiff_truth = f_truth[el_pos[1]] - f_truth[el_pos[0]]
v_truth = vdiff_truth * np.array([1, -1, -1, 1])
self.assertTrue(np.allclose(v, v_truth))
def test_compute_jac(self):
"""test solve using a simple mesh structure"""
mesh = _mesh_obj()
ex_mat = np.array([[0, 1]])
protocol = _protocol_obj(ex_mat, mesh.n_el, 1, "meas_current")
fwd = pyeit.eit.fem.EITForward(mesh, protocol)
# testing solve
jac_truth = np.array([[-0.25874523, -2.75529584], [0.25874523, 2.75529584]])
jac, _ = fwd.compute_jac()
self.assertTrue(np.allclose(jac, jac_truth))
def test_compute_b_matrix(self):
"""test compute_jac using a simple mesh structure"""
mesh = _mesh_obj()
ex_mat = np.array([[0, 1]])
protocol = _protocol_obj(ex_mat, mesh.n_el, 1, "meas_current")
# smear: (f_min < f) & (f <= f_max)
b_truth = np.array([[1, 1, 0, 1], [1, 1, 0, 1]])
# fix ref to be exactly the one in mesh
fwd = pyeit.eit.fem.EITForward(mesh, protocol)
b = fwd.compute_b_matrix()
self.assertTrue(np.allclose(b, b_truth))
if __name__ == "__main__":
unittest.main()