-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAOT_semantics.thy
1801 lines (1739 loc) · 130 KB
/
AOT_semantics.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(*<*)
theory AOT_semantics
imports AOT_syntax
begin
(*>*)
section\<open>Abstract Semantics for AOT\<close>
specification(AOT_denotes)
\<comment> \<open>Relate object level denoting to meta-denoting. AOT's definitions of
denoting will become derivable at each type.\<close>
AOT_sem_denotes: \<open>[w \<Turnstile> \<tau>\<down>] = AOT_model_denotes \<tau>\<close>
by (rule exI[where x=\<open>\<lambda> \<tau> . \<epsilon>\<^sub>\<o> w . AOT_model_denotes \<tau>\<close>])
(simp add: AOT_model_proposition_choice_simp)
lemma AOT_sem_var_induct[induct type: AOT_var]:
assumes AOT_denoting_term_case: \<open>\<And> \<tau> . [v \<Turnstile> \<tau>\<down>] \<Longrightarrow> [v \<Turnstile> \<phi>{\<tau>}]\<close>
shows \<open>[v \<Turnstile> \<phi>{\<alpha>}]\<close>
by (simp add: AOT_denoting_term_case AOT_sem_denotes AOT_term_of_var)
text\<open>\linelabel{AOT_imp_spec}\<close>
specification(AOT_imp)
AOT_sem_imp: \<open>[w \<Turnstile> \<phi> \<rightarrow> \<psi>] = ([w \<Turnstile> \<phi>] \<longrightarrow> [w \<Turnstile> \<psi>])\<close>
by (rule exI[where x=\<open>\<lambda> \<phi> \<psi> . \<epsilon>\<^sub>\<o> w . ([w \<Turnstile> \<phi>] \<longrightarrow> [w \<Turnstile> \<psi>])\<close>])
(simp add: AOT_model_proposition_choice_simp)
specification(AOT_not)
AOT_sem_not: \<open>[w \<Turnstile> \<not>\<phi>] = (\<not>[w \<Turnstile> \<phi>])\<close>
by (rule exI[where x=\<open>\<lambda> \<phi> . \<epsilon>\<^sub>\<o> w . \<not>[w \<Turnstile> \<phi>]\<close>])
(simp add: AOT_model_proposition_choice_simp)
text\<open>\linelabel{AOT_box_spec}\<close>
specification(AOT_box)
AOT_sem_box: \<open>[w \<Turnstile> \<box>\<phi>] = (\<forall> w . [w \<Turnstile> \<phi>])\<close>
by (rule exI[where x=\<open>\<lambda> \<phi> . \<epsilon>\<^sub>\<o> w . \<forall> w . [w \<Turnstile> \<phi>]\<close>])
(simp add: AOT_model_proposition_choice_simp)
text\<open>\linelabel{AOT_act_spec}\<close>
specification(AOT_act)
AOT_sem_act: \<open>[w \<Turnstile> \<^bold>\<A>\<phi>] = [w\<^sub>0 \<Turnstile> \<phi>]\<close>
by (rule exI[where x=\<open>\<lambda> \<phi> . \<epsilon>\<^sub>\<o> w . [w\<^sub>0 \<Turnstile> \<phi>]\<close>])
(simp add: AOT_model_proposition_choice_simp)
text\<open>Derived semantics for basic defined connectives.\<close>
lemma AOT_sem_conj: \<open>[w \<Turnstile> \<phi> & \<psi>] = ([w \<Turnstile> \<phi>] \<and> [w \<Turnstile> \<psi>])\<close>
using AOT_conj AOT_model_equiv_def AOT_sem_imp AOT_sem_not by auto
lemma AOT_sem_equiv: \<open>[w \<Turnstile> \<phi> \<equiv> \<psi>] = ([w \<Turnstile> \<phi>] = [w \<Turnstile> \<psi>])\<close>
using AOT_equiv AOT_sem_conj AOT_model_equiv_def AOT_sem_imp by auto
lemma AOT_sem_disj: \<open>[w \<Turnstile> \<phi> \<or> \<psi>] = ([w \<Turnstile> \<phi>] \<or> [w \<Turnstile> \<psi>])\<close>
using AOT_disj AOT_model_equiv_def AOT_sem_imp AOT_sem_not by auto
lemma AOT_sem_dia: \<open>[w \<Turnstile> \<diamond>\<phi>] = (\<exists> w . [w \<Turnstile> \<phi>])\<close>
using AOT_dia AOT_sem_box AOT_model_equiv_def AOT_sem_not by auto
specification(AOT_forall)
AOT_sem_forall: \<open>[w \<Turnstile> \<forall>\<alpha> \<phi>{\<alpha>}] = (\<forall> \<tau> . [w \<Turnstile> \<tau>\<down>] \<longrightarrow> [w \<Turnstile> \<phi>{\<tau>}])\<close>
by (rule exI[where x=\<open>\<lambda> op . \<epsilon>\<^sub>\<o> w . \<forall> \<tau> . [w \<Turnstile> \<tau>\<down>] \<longrightarrow> [w \<Turnstile> \<guillemotleft>op \<tau>\<guillemotright>]\<close>])
(simp add: AOT_model_proposition_choice_simp)
lemma AOT_sem_exists: \<open>[w \<Turnstile> \<exists>\<alpha> \<phi>{\<alpha>}] = (\<exists> \<tau> . [w \<Turnstile> \<tau>\<down>] \<and> [w \<Turnstile> \<phi>{\<tau>}])\<close>
unfolding AOT_exists[unfolded AOT_model_equiv_def, THEN spec]
by (simp add: AOT_sem_forall AOT_sem_not)
text\<open>\linelabel{AOT_eq_spec}\<close>
specification(AOT_eq)
\<comment> \<open>Relate identity to denoting identity in the meta-logic. AOT's definitions
of identity will become derivable at each type.\<close>
AOT_sem_eq: \<open>[w \<Turnstile> \<tau> = \<tau>'] = ([w \<Turnstile> \<tau>\<down>] \<and> [w \<Turnstile> \<tau>'\<down>] \<and> \<tau> = \<tau>')\<close>
by (rule exI[where x=\<open>\<lambda> \<tau> \<tau>' . \<epsilon>\<^sub>\<o> w . [w \<Turnstile> \<tau>\<down>] \<and> [w \<Turnstile> \<tau>'\<down>] \<and> \<tau> = \<tau>'\<close>])
(simp add: AOT_model_proposition_choice_simp)
text\<open>\linelabel{AOT_desc_spec}\<close>
specification(AOT_desc)
\<comment> \<open>Descriptions denote, if there is a unique denoting object satisfying the
matrix in the actual world.\<close>
AOT_sem_desc_denotes: \<open>[w \<Turnstile> \<^bold>\<iota>x(\<phi>{x})\<down>] = (\<exists>! \<kappa> . [w\<^sub>0 \<Turnstile> \<kappa>\<down>] \<and> [w\<^sub>0 \<Turnstile> \<phi>{\<kappa>}])\<close>
\<comment> \<open>Denoting descriptions satisfy their matrix in the actual world.\<close>
AOT_sem_desc_prop: \<open>[w \<Turnstile> \<^bold>\<iota>x(\<phi>{x})\<down>] \<Longrightarrow> [w\<^sub>0 \<Turnstile> \<phi>{\<^bold>\<iota>x(\<phi>{x})}]\<close>
\<comment> \<open>Uniqueness of denoting descriptions.\<close>
AOT_sem_desc_unique: \<open>[w \<Turnstile> \<^bold>\<iota>x(\<phi>{x})\<down>] \<Longrightarrow> [w \<Turnstile> \<kappa>\<down>] \<Longrightarrow> [w\<^sub>0 \<Turnstile> \<phi>{\<kappa>}] \<Longrightarrow>
[w \<Turnstile> \<^bold>\<iota>x(\<phi>{x}) = \<kappa>]\<close>
proof -
have \<open>\<exists>x::'a . \<not>AOT_model_denotes x\<close>
using AOT_model_nondenoting_ex
by blast
text\<open>Note that we may choose a distinct non-denoting object for each matrix.
We do this explicitly merely to convince ourselves that our specification
can still be satisfied.\<close>
then obtain nondenoting :: \<open>('a \<Rightarrow> \<o>) \<Rightarrow> 'a\<close> where
nondenoting: \<open>\<forall> \<phi> . \<not>AOT_model_denotes (nondenoting \<phi>)\<close>
by fast
define desc where
\<open>desc = (\<lambda> \<phi> . if (\<exists>! \<kappa> . [w\<^sub>0 \<Turnstile> \<kappa>\<down>] \<and> [w\<^sub>0 \<Turnstile> \<phi>{\<kappa>}])
then (THE \<kappa> . [w\<^sub>0 \<Turnstile> \<kappa>\<down>] \<and> [w\<^sub>0 \<Turnstile> \<phi>{\<kappa>}])
else nondenoting \<phi>)\<close>
{
fix \<phi> :: \<open>'a \<Rightarrow> \<o>\<close>
assume ex1: \<open>\<exists>! \<kappa> . [w\<^sub>0 \<Turnstile> \<kappa>\<down>] \<and> [w\<^sub>0 \<Turnstile> \<phi>{\<kappa>}]\<close>
then obtain \<kappa> where x_prop: "[w\<^sub>0 \<Turnstile> \<kappa>\<down>] \<and> [w\<^sub>0 \<Turnstile> \<phi>{\<kappa>}]"
unfolding AOT_sem_denotes by blast
moreover have "(desc \<phi>) = \<kappa>"
unfolding desc_def using x_prop ex1 by fastforce
ultimately have "[w\<^sub>0 \<Turnstile> \<guillemotleft>desc \<phi>\<guillemotright>\<down>] \<and> [w\<^sub>0 \<Turnstile> \<guillemotleft>\<phi> (desc \<phi>)\<guillemotright>]"
by blast
} note 1 = this
moreover {
fix \<phi> :: \<open>'a \<Rightarrow> \<o>\<close>
assume nex1: \<open>\<nexists>! \<kappa> . [w\<^sub>0 \<Turnstile> \<kappa>\<down>] \<and> [w\<^sub>0 \<Turnstile> \<phi>{\<kappa>}]\<close>
hence "(desc \<phi>) = nondenoting \<phi>" by (simp add: desc_def AOT_sem_denotes)
hence "[w \<Turnstile> \<not>\<guillemotleft>desc \<phi>\<guillemotright>\<down>]" for w
by (simp add: AOT_sem_denotes nondenoting AOT_sem_not)
}
ultimately have desc_denotes_simp:
\<open>[w \<Turnstile> \<guillemotleft>desc \<phi>\<guillemotright>\<down>] = (\<exists>! \<kappa> . [w\<^sub>0 \<Turnstile> \<kappa>\<down>] \<and> [w\<^sub>0 \<Turnstile> \<phi>{\<kappa>}])\<close> for \<phi> w
by (simp add: AOT_sem_denotes desc_def nondenoting)
have \<open>(\<forall>\<phi> w. [w \<Turnstile> \<guillemotleft>desc \<phi>\<guillemotright>\<down>] = (\<exists>!\<kappa>. [w\<^sub>0 \<Turnstile> \<kappa>\<down>] \<and> [w\<^sub>0 \<Turnstile> \<phi>{\<kappa>}])) \<and>
(\<forall>\<phi> w. [w \<Turnstile> \<guillemotleft>desc \<phi>\<guillemotright>\<down>] \<longrightarrow> [w\<^sub>0 \<Turnstile> \<guillemotleft>\<phi> (desc \<phi>)\<guillemotright>]) \<and>
(\<forall>\<phi> w \<kappa>. [w \<Turnstile> \<guillemotleft>desc \<phi>\<guillemotright>\<down>] \<longrightarrow> [w \<Turnstile> \<kappa>\<down>] \<longrightarrow> [w\<^sub>0 \<Turnstile> \<phi>{\<kappa>}] \<longrightarrow>
[w \<Turnstile> \<guillemotleft>desc \<phi>\<guillemotright> = \<kappa>])\<close>
by (insert 1; auto simp: desc_denotes_simp AOT_sem_eq AOT_sem_denotes
desc_def nondenoting)
thus ?thesis
by (safe intro!: exI[where x=desc]; presburger)
qed
text\<open>\linelabel{AOT_exe_lambda_spec}\<close>
specification(AOT_exe AOT_lambda)
\<comment> \<open>Truth conditions of exemplification formulas.\<close>
AOT_sem_exe: \<open>[w \<Turnstile> [\<Pi>]\<kappa>\<^sub>1...\<kappa>\<^sub>n] = ([w \<Turnstile> \<Pi>\<down>] \<and> [w \<Turnstile> \<kappa>\<^sub>1...\<kappa>\<^sub>n\<down>] \<and>
[w \<Turnstile> \<guillemotleft>Rep_rel \<Pi> \<kappa>\<^sub>1\<kappa>\<^sub>n\<guillemotright>])\<close>
\<comment> \<open>\eta-conversion for denoting terms; equivalent to AOT's axiom\<close>
AOT_sem_lambda_eta: \<open>[w \<Turnstile> \<Pi>\<down>] \<Longrightarrow> [w \<Turnstile> [\<lambda>\<nu>\<^sub>1...\<nu>\<^sub>n [\<Pi>]\<nu>\<^sub>1...\<nu>\<^sub>n] = \<Pi>]\<close>
\<comment> \<open>\beta-conversion; equivalent to AOT's axiom\<close>
AOT_sem_lambda_beta: \<open>[w \<Turnstile> [\<lambda>\<nu>\<^sub>1...\<nu>\<^sub>n \<phi>{\<nu>\<^sub>1...\<nu>\<^sub>n}]\<down>] \<Longrightarrow> [w \<Turnstile> \<kappa>\<^sub>1...\<kappa>\<^sub>n\<down>] \<Longrightarrow>
[w \<Turnstile> [\<lambda>\<nu>\<^sub>1...\<nu>\<^sub>n \<phi>{\<nu>\<^sub>1...\<nu>\<^sub>n}]\<kappa>\<^sub>1...\<kappa>\<^sub>n] = [w \<Turnstile> \<phi>{\<kappa>\<^sub>1...\<kappa>\<^sub>n}]\<close>
\<comment> \<open>Necessary and sufficient conditions for relations to denote. Equivalent
to a theorem of AOT and used to derive the base cases of denoting relations
(cqt.2).\<close>
AOT_sem_lambda_denotes: \<open>[w \<Turnstile> [\<lambda>\<nu>\<^sub>1...\<nu>\<^sub>n \<phi>{\<nu>\<^sub>1...\<nu>\<^sub>n}]\<down>] =
(\<forall> v \<kappa>\<^sub>1\<kappa>\<^sub>n \<kappa>\<^sub>1'\<kappa>\<^sub>n' . [v \<Turnstile> \<kappa>\<^sub>1...\<kappa>\<^sub>n\<down>] \<and> [v \<Turnstile> \<kappa>\<^sub>1'...\<kappa>\<^sub>n'\<down>] \<and>
(\<forall> \<Pi> v . [v \<Turnstile> \<Pi>\<down>] \<longrightarrow> [v \<Turnstile> [\<Pi>]\<kappa>\<^sub>1...\<kappa>\<^sub>n] = [v \<Turnstile> [\<Pi>]\<kappa>\<^sub>1'...\<kappa>\<^sub>n']) \<longrightarrow>
[v \<Turnstile> \<phi>{\<kappa>\<^sub>1...\<kappa>\<^sub>n}] = [v \<Turnstile> \<phi>{\<kappa>\<^sub>1'...\<kappa>\<^sub>n'}])\<close>
\<comment> \<open>Equivalent to AOT's coexistence axiom.\<close>
AOT_sem_lambda_coex: \<open>[w \<Turnstile> [\<lambda>\<nu>\<^sub>1...\<nu>\<^sub>n \<phi>{\<nu>\<^sub>1...\<nu>\<^sub>n}]\<down>] \<Longrightarrow>
(\<forall> w \<kappa>\<^sub>1\<kappa>\<^sub>n . [w \<Turnstile> \<kappa>\<^sub>1...\<kappa>\<^sub>n\<down>] \<longrightarrow> [w \<Turnstile> \<phi>{\<kappa>\<^sub>1...\<kappa>\<^sub>n}] = [w \<Turnstile> \<psi>{\<kappa>\<^sub>1...\<kappa>\<^sub>n}]) \<Longrightarrow>
[w \<Turnstile> [\<lambda>\<nu>\<^sub>1...\<nu>\<^sub>n \<psi>{\<nu>\<^sub>1...\<nu>\<^sub>n}]\<down>]\<close>
\<comment> \<open>Only the unary case of the following should hold, but our specification
has to range over all types. We might move @{const AOT_exe} and
@{const AOT_lambda} to type classes in the future to solve this.\<close>
AOT_sem_lambda_eq_prop_eq: \<open>\<guillemotleft>[\<lambda>\<nu>\<^sub>1...\<nu>\<^sub>n \<phi>]\<guillemotright> = \<guillemotleft>[\<lambda>\<nu>\<^sub>1...\<nu>\<^sub>n \<psi>]\<guillemotright> \<Longrightarrow> \<phi> = \<psi>\<close>
\<comment> \<open>The following is solely required for validating n-ary relation identity
and has the danger of implying artifactual theorems. Possibly avoidable
by moving @{const AOT_exe} and @{const AOT_lambda} to type classes.\<close>
AOT_sem_exe_denoting: \<open>[w \<Turnstile> \<Pi>\<down>] \<Longrightarrow> AOT_exe \<Pi> \<kappa>s = Rep_rel \<Pi> \<kappa>s\<close>
\<comment> \<open>The following is required for validating the base cases of denoting
relations (cqt.2). A version of this meta-logical identity will
become derivable in future versions of AOT, so this will ultimately not
result in artifactual theorems.\<close>
AOT_sem_exe_equiv: \<open>AOT_model_term_equiv x y \<Longrightarrow> AOT_exe \<Pi> x = AOT_exe \<Pi> y\<close>
proof -
have \<open>\<exists> x :: <'a> . \<not>AOT_model_denotes x\<close>
by (rule exI[where x=\<open>Abs_rel (\<lambda> x . \<epsilon>\<^sub>\<o> w. True)\<close>])
(meson AOT_model_denotes_rel.abs_eq AOT_model_nondenoting_ex
AOT_model_proposition_choice_simp)
define exe :: \<open><'a> \<Rightarrow> 'a \<Rightarrow> \<o>\<close> where
\<open>exe \<equiv> \<lambda> \<Pi> \<kappa>s . if AOT_model_denotes \<Pi>
then Rep_rel \<Pi> \<kappa>s
else (\<epsilon>\<^sub>\<o> w . False)\<close>
define lambda :: \<open>('a\<Rightarrow>\<o>) \<Rightarrow> <'a>\<close> where
\<open>lambda \<equiv> \<lambda> \<phi> . if AOT_model_denotes (Abs_rel \<phi>)
then (Abs_rel \<phi>)
else
if (\<forall> \<kappa> \<kappa>' w . (AOT_model_denotes \<kappa> \<and> AOT_model_term_equiv \<kappa> \<kappa>') \<longrightarrow>
[w \<Turnstile> \<guillemotleft>\<phi> \<kappa>\<guillemotright>] = [w \<Turnstile> \<guillemotleft>\<phi> \<kappa>'\<guillemotright>])
then
Abs_rel (fix_irregular (\<lambda> x . if AOT_model_denotes x
then \<phi> (SOME y . AOT_model_term_equiv x y)
else (\<epsilon>\<^sub>\<o> w . False)))
else
Abs_rel \<phi>\<close>
have fix_irregular_denoting_simp[simp]:
\<open>fix_irregular (\<lambda>x. if AOT_model_denotes x then \<phi> x else \<psi> x) \<kappa> = \<phi> \<kappa>\<close>
if \<open>AOT_model_denotes \<kappa>\<close>
for \<kappa> :: 'a and \<phi> \<psi>
by (simp add: that fix_irregular_denoting)
have denoting_eps_cong[cong]:
\<open>[w \<Turnstile> \<guillemotleft>\<phi> (Eps (AOT_model_term_equiv \<kappa>))\<guillemotright>] = [w \<Turnstile> \<guillemotleft>\<phi> \<kappa>\<guillemotright>]\<close>
if \<open>AOT_model_denotes \<kappa>\<close>
and \<open>\<forall> \<kappa> \<kappa>'. AOT_model_denotes \<kappa> \<and> AOT_model_term_equiv \<kappa> \<kappa>' \<longrightarrow>
(\<forall>w. [w \<Turnstile> \<guillemotleft>\<phi> \<kappa>\<guillemotright>] = [w \<Turnstile> \<guillemotleft>\<phi> \<kappa>'\<guillemotright>])\<close>
for w :: w and \<kappa> :: 'a and \<phi> :: \<open>'a\<Rightarrow>\<o>\<close>
using that AOT_model_term_equiv_eps(2) by blast
have exe_rep_rel: \<open>[w \<Turnstile> \<guillemotleft>exe \<Pi> \<kappa>\<^sub>1\<kappa>\<^sub>n\<guillemotright>] = ([w \<Turnstile> \<Pi>\<down>] \<and> [w \<Turnstile> \<kappa>\<^sub>1...\<kappa>\<^sub>n\<down>] \<and>
[w \<Turnstile> \<guillemotleft>Rep_rel \<Pi> \<kappa>\<^sub>1\<kappa>\<^sub>n\<guillemotright>])\<close> for w \<Pi> \<kappa>\<^sub>1\<kappa>\<^sub>n
by (metis AOT_model_denotes_rel.rep_eq exe_def AOT_sem_denotes
AOT_model_proposition_choice_simp)
moreover have \<open>[w \<Turnstile> \<guillemotleft>\<Pi>\<guillemotright>\<down>] \<Longrightarrow> [w \<Turnstile> \<guillemotleft>lambda (exe \<Pi>)\<guillemotright> = \<guillemotleft>\<Pi>\<guillemotright>]\<close> for \<Pi> w
by (auto simp: Rep_rel_inverse lambda_def AOT_sem_denotes AOT_sem_eq
AOT_model_denotes_rel_def Abs_rel_inverse exe_def)
moreover have lambda_denotes_beta:
\<open>[w \<Turnstile> \<guillemotleft>exe (lambda \<phi>) \<kappa> \<guillemotright>] = [w \<Turnstile> \<guillemotleft>\<phi> \<kappa>\<guillemotright>]\<close>
if \<open>[w \<Turnstile> \<guillemotleft>lambda \<phi>\<guillemotright>\<down>]\<close> and \<open>[w \<Turnstile> \<guillemotleft>\<kappa>\<guillemotright>\<down>]\<close>
for \<phi> \<kappa> w
using that unfolding exe_def AOT_sem_denotes
by (auto simp: lambda_def Abs_rel_inverse split: if_split_asm)
moreover have lambda_denotes_simp:
\<open>[w \<Turnstile> \<guillemotleft>lambda \<phi>\<guillemotright>\<down>] = (\<forall> v \<kappa>\<^sub>1\<kappa>\<^sub>n \<kappa>\<^sub>1'\<kappa>\<^sub>n' . [v \<Turnstile> \<kappa>\<^sub>1...\<kappa>\<^sub>n\<down>] \<and> [v \<Turnstile> \<kappa>\<^sub>1'...\<kappa>\<^sub>n'\<down>] \<and>
(\<forall> \<Pi> v . [v \<Turnstile> \<Pi>\<down>] \<longrightarrow> [v \<Turnstile> \<guillemotleft>exe \<Pi> \<kappa>\<^sub>1\<kappa>\<^sub>n\<guillemotright>] = [v \<Turnstile> \<guillemotleft>exe \<Pi> \<kappa>\<^sub>1'\<kappa>\<^sub>n'\<guillemotright>]) \<longrightarrow>
[v \<Turnstile> \<phi>{\<kappa>\<^sub>1...\<kappa>\<^sub>n}] = [v \<Turnstile> \<phi>{\<kappa>\<^sub>1'...\<kappa>\<^sub>n'}])\<close> for \<phi> w
proof
assume \<open>[w \<Turnstile> \<guillemotleft>lambda \<phi>\<guillemotright>\<down>]\<close>
hence \<open>AOT_model_denotes (lambda \<phi>)\<close>
unfolding AOT_sem_denotes by simp
moreover have \<open>[w \<Turnstile> \<guillemotleft>\<phi> \<kappa>\<guillemotright>] \<Longrightarrow> [w \<Turnstile> \<guillemotleft>\<phi> \<kappa>'\<guillemotright>]\<close>
and \<open>[w \<Turnstile> \<guillemotleft>\<phi> \<kappa>'\<guillemotright>] \<Longrightarrow> [w \<Turnstile> \<guillemotleft>\<phi> \<kappa>\<guillemotright>]\<close>
if \<open>AOT_model_denotes \<kappa>\<close> and \<open>AOT_model_term_equiv \<kappa> \<kappa>'\<close>
for w \<kappa> \<kappa>'
by (metis (no_types, lifting) AOT_model_denotes_rel.abs_eq lambda_def
that calculation)+
ultimately show \<open>\<forall> v \<kappa>\<^sub>1\<kappa>\<^sub>n \<kappa>\<^sub>1'\<kappa>\<^sub>n' . [v \<Turnstile> \<kappa>\<^sub>1...\<kappa>\<^sub>n\<down>] \<and> [v \<Turnstile> \<kappa>\<^sub>1'...\<kappa>\<^sub>n'\<down>] \<and>
(\<forall> \<Pi> v . [v \<Turnstile> \<Pi>\<down>] \<longrightarrow> [v \<Turnstile> \<guillemotleft>exe \<Pi> \<kappa>\<^sub>1\<kappa>\<^sub>n\<guillemotright>] = [v \<Turnstile> \<guillemotleft>exe \<Pi> \<kappa>\<^sub>1'\<kappa>\<^sub>n'\<guillemotright>]) \<longrightarrow>
[v \<Turnstile> \<phi>{\<kappa>\<^sub>1...\<kappa>\<^sub>n}] = [v \<Turnstile> \<phi>{\<kappa>\<^sub>1'...\<kappa>\<^sub>n'}]\<close>
unfolding AOT_sem_denotes
by (metis (no_types) AOT_sem_denotes lambda_denotes_beta)
next
assume \<open>\<forall> v \<kappa>\<^sub>1\<kappa>\<^sub>n \<kappa>\<^sub>1'\<kappa>\<^sub>n' . [v \<Turnstile> \<kappa>\<^sub>1...\<kappa>\<^sub>n\<down>] \<and> [v \<Turnstile> \<kappa>\<^sub>1'...\<kappa>\<^sub>n'\<down>] \<and>
(\<forall> \<Pi> v . [v \<Turnstile> \<Pi>\<down>] \<longrightarrow> [v \<Turnstile> \<guillemotleft>exe \<Pi> \<kappa>\<^sub>1\<kappa>\<^sub>n\<guillemotright>] = [v \<Turnstile> \<guillemotleft>exe \<Pi> \<kappa>\<^sub>1'\<kappa>\<^sub>n'\<guillemotright>]) \<longrightarrow>
[v \<Turnstile> \<phi>{\<kappa>\<^sub>1...\<kappa>\<^sub>n}] = [v \<Turnstile> \<phi>{\<kappa>\<^sub>1'...\<kappa>\<^sub>n'}]\<close>
hence \<open>[w \<Turnstile> \<guillemotleft>\<phi> \<kappa>\<guillemotright>] = [w \<Turnstile> \<guillemotleft>\<phi> \<kappa>'\<guillemotright>]\<close>
if \<open>AOT_model_denotes \<kappa> \<and> AOT_model_denotes \<kappa>' \<and> AOT_model_term_equiv \<kappa> \<kappa>'\<close>
for w \<kappa> \<kappa>'
using that
by (auto simp: AOT_sem_denotes)
(meson AOT_model_term_equiv_rel_equiv AOT_sem_denotes exe_rep_rel)+
hence \<open>[w \<Turnstile> \<guillemotleft>\<phi> \<kappa>\<guillemotright>] = [w \<Turnstile> \<guillemotleft>\<phi> \<kappa>'\<guillemotright>]\<close>
if \<open>AOT_model_denotes \<kappa> \<and> AOT_model_term_equiv \<kappa> \<kappa>'\<close>
for w \<kappa> \<kappa>'
using that AOT_model_term_equiv_denotes by blast
hence \<open>AOT_model_denotes (lambda \<phi>)\<close>
by (auto simp: lambda_def Abs_rel_inverse AOT_model_denotes_rel.abs_eq
AOT_model_irregular_equiv AOT_model_term_equiv_eps(3)
AOT_model_term_equiv_regular fix_irregular_def AOT_sem_denotes
AOT_model_term_equiv_denotes AOT_model_proposition_choice_simp
AOT_model_irregular_false
split: if_split_asm
intro: AOT_model_irregular_eqI)
thus \<open>[w \<Turnstile> \<guillemotleft>lambda \<phi>\<guillemotright>\<down>]\<close>
by (simp add: AOT_sem_denotes)
qed
moreover have \<open>[w \<Turnstile> \<guillemotleft>lambda \<psi>\<guillemotright>\<down>]\<close>
if \<open>[w \<Turnstile> \<guillemotleft>lambda \<phi>\<guillemotright>\<down>]\<close>
and \<open>\<forall> w \<kappa>\<^sub>1\<kappa>\<^sub>n . [w \<Turnstile> \<kappa>\<^sub>1...\<kappa>\<^sub>n\<down>] \<longrightarrow> [w \<Turnstile> \<phi>{\<kappa>\<^sub>1...\<kappa>\<^sub>n}] = [w \<Turnstile> \<psi>{\<kappa>\<^sub>1...\<kappa>\<^sub>n}]\<close>
for \<phi> \<psi> w using that unfolding lambda_denotes_simp by auto
moreover have \<open>[w \<Turnstile> \<Pi>\<down>] \<Longrightarrow> exe \<Pi> \<kappa>s = Rep_rel \<Pi> \<kappa>s\<close> for \<Pi> \<kappa>s w
by (simp add: exe_def AOT_sem_denotes)
moreover have \<open>lambda (\<lambda>x. p) = lambda (\<lambda>x. q) \<Longrightarrow> p = q\<close> for p q
unfolding lambda_def
by (auto split: if_split_asm simp: Abs_rel_inject fix_irregular_def)
(meson AOT_model_irregular_nondenoting AOT_model_denoting_ex)+
moreover have \<open>AOT_model_term_equiv x y \<Longrightarrow> exe \<Pi> x = exe \<Pi> y\<close> for x y \<Pi>
unfolding exe_def
by (meson AOT_model_denotes_rel.rep_eq)
note calculation = calculation this
show ?thesis
apply (safe intro!: exI[where x=exe] exI[where x=lambda])
using calculation apply simp_all
using lambda_denotes_simp by blast+
qed
lemma AOT_model_lambda_denotes:
\<open>AOT_model_denotes (AOT_lambda \<phi>) = (\<forall> v \<kappa> \<kappa>' .
AOT_model_denotes \<kappa> \<and> AOT_model_denotes \<kappa>' \<and> AOT_model_term_equiv \<kappa> \<kappa>' \<longrightarrow>
[v \<Turnstile> \<guillemotleft>\<phi> \<kappa>\<guillemotright>] = [v \<Turnstile> \<guillemotleft>\<phi> \<kappa>'\<guillemotright>])\<close>
proof(safe)
fix v and \<kappa> \<kappa>' :: 'a
assume \<open>AOT_model_denotes (AOT_lambda \<phi>)\<close>
hence 1: \<open>AOT_model_denotes \<kappa>\<^sub>1\<kappa>\<^sub>n \<and>
AOT_model_denotes \<kappa>\<^sub>1'\<kappa>\<^sub>n' \<and>
(\<forall>\<Pi> v. AOT_model_denotes \<Pi> \<longrightarrow> [v \<Turnstile> [\<Pi>]\<kappa>\<^sub>1...\<kappa>\<^sub>n] = [v \<Turnstile> [\<Pi>]\<kappa>\<^sub>1'...\<kappa>\<^sub>n']) \<longrightarrow>
[v \<Turnstile> \<phi>{\<kappa>\<^sub>1...\<kappa>\<^sub>n}] = [v \<Turnstile> \<phi>{\<kappa>\<^sub>1'...\<kappa>\<^sub>n'}]\<close> for \<kappa>\<^sub>1\<kappa>\<^sub>n \<kappa>\<^sub>1'\<kappa>\<^sub>n' v
using AOT_sem_lambda_denotes[simplified AOT_sem_denotes] by blast
{
fix v and \<kappa>\<^sub>1\<kappa>\<^sub>n \<kappa>\<^sub>1'\<kappa>\<^sub>n' :: 'a
assume d: \<open>AOT_model_denotes \<kappa>\<^sub>1\<kappa>\<^sub>n \<and> AOT_model_denotes \<kappa>\<^sub>1'\<kappa>\<^sub>n' \<and>
AOT_model_term_equiv \<kappa>\<^sub>1\<kappa>\<^sub>n \<kappa>\<^sub>1'\<kappa>\<^sub>n'\<close>
hence \<open>\<forall>\<Pi> w. AOT_model_denotes \<Pi> \<longrightarrow> [w \<Turnstile> [\<Pi>]\<kappa>\<^sub>1...\<kappa>\<^sub>n] = [w \<Turnstile> [\<Pi>]\<kappa>\<^sub>1'...\<kappa>\<^sub>n']\<close>
by (metis AOT_sem_exe_equiv)
hence \<open>[v \<Turnstile> \<phi>{\<kappa>\<^sub>1...\<kappa>\<^sub>n}] = [v \<Turnstile> \<phi>{\<kappa>\<^sub>1'...\<kappa>\<^sub>n'}]\<close> using d 1 by auto
}
moreover assume \<open>AOT_model_denotes \<kappa>\<close>
moreover assume \<open>AOT_model_denotes \<kappa>'\<close>
moreover assume \<open>AOT_model_term_equiv \<kappa> \<kappa>'\<close>
ultimately show \<open>[v \<Turnstile> \<guillemotleft>\<phi> \<kappa>\<guillemotright>] \<Longrightarrow> [v \<Turnstile> \<guillemotleft>\<phi> \<kappa>'\<guillemotright>]\<close>
and \<open>[v \<Turnstile> \<guillemotleft>\<phi> \<kappa>'\<guillemotright>] \<Longrightarrow> [v \<Turnstile> \<guillemotleft>\<phi> \<kappa>\<guillemotright>]\<close>
by auto
next
assume 0: \<open>\<forall> v \<kappa> \<kappa>' . AOT_model_denotes \<kappa> \<and> AOT_model_denotes \<kappa>' \<and>
AOT_model_term_equiv \<kappa> \<kappa>' \<longrightarrow> [v \<Turnstile> \<guillemotleft>\<phi> \<kappa>\<guillemotright>] = [v \<Turnstile> \<guillemotleft>\<phi> \<kappa>'\<guillemotright>]\<close>
{
fix \<kappa>\<^sub>1\<kappa>\<^sub>n \<kappa>\<^sub>1'\<kappa>\<^sub>n' :: 'a
assume den: \<open>AOT_model_denotes \<kappa>\<^sub>1\<kappa>\<^sub>n\<close>
moreover assume den': \<open>AOT_model_denotes \<kappa>\<^sub>1'\<kappa>\<^sub>n'\<close>
assume \<open>\<forall>\<Pi> v . AOT_model_denotes \<Pi> \<longrightarrow>
[v \<Turnstile> [\<Pi>]\<kappa>\<^sub>1...\<kappa>\<^sub>n] = [v \<Turnstile> [\<Pi>]\<kappa>\<^sub>1'...\<kappa>\<^sub>n']\<close>
hence \<open>\<forall>\<Pi> v . AOT_model_denotes \<Pi> \<longrightarrow>
[v \<Turnstile> \<guillemotleft>Rep_rel \<Pi> \<kappa>\<^sub>1\<kappa>\<^sub>n\<guillemotright>] = [v \<Turnstile> \<guillemotleft>Rep_rel \<Pi> \<kappa>\<^sub>1'\<kappa>\<^sub>n'\<guillemotright>]\<close>
by (simp add: AOT_sem_denotes AOT_sem_exe den den')
hence "AOT_model_term_equiv \<kappa>\<^sub>1\<kappa>\<^sub>n \<kappa>\<^sub>1'\<kappa>\<^sub>n'"
unfolding AOT_model_term_equiv_rel_equiv[OF den, OF den']
by argo
hence \<open>[v \<Turnstile> \<phi>{\<kappa>\<^sub>1...\<kappa>\<^sub>n}] = [v \<Turnstile> \<phi>{\<kappa>\<^sub>1'...\<kappa>\<^sub>n'}]\<close> for v
using den den' 0 by blast
}
thus \<open>AOT_model_denotes (AOT_lambda \<phi>)\<close>
unfolding AOT_sem_lambda_denotes[simplified AOT_sem_denotes]
by blast
qed
specification (AOT_lambda0)
AOT_sem_lambda0: "AOT_lambda0 \<phi> = \<phi>"
by (rule exI[where x=\<open>\<lambda>x. x\<close>]) simp
specification(AOT_concrete)
AOT_sem_concrete: \<open>[w \<Turnstile> [E!]\<kappa>] =
AOT_model_concrete w \<kappa>\<close>
by (rule exI[where x=\<open>AOT_var_of_term (Abs_rel
(\<lambda> x . \<epsilon>\<^sub>\<o> w . AOT_model_concrete w x))\<close>];
subst AOT_var_of_term_inverse)
(auto simp: AOT_model_unary_regular AOT_model_concrete_denotes
AOT_model_concrete_equiv AOT_model_regular_\<kappa>_def
AOT_model_proposition_choice_simp AOT_sem_exe Abs_rel_inverse
AOT_model_denotes_rel_def AOT_sem_denotes)
lemma AOT_sem_equiv_defI:
assumes \<open>\<And> v . [v \<Turnstile> \<phi>] \<Longrightarrow> [v \<Turnstile> \<psi>]\<close>
and \<open>\<And> v . [v \<Turnstile> \<psi>] \<Longrightarrow> [v \<Turnstile> \<phi>]\<close>
shows \<open>AOT_model_equiv_def \<phi> \<psi>\<close>
using AOT_model_equiv_def assms by blast
lemma AOT_sem_id_defI:
assumes \<open>\<And> \<alpha> v . [v \<Turnstile> \<guillemotleft>\<sigma> \<alpha>\<guillemotright>\<down>] \<Longrightarrow> [v \<Turnstile> \<guillemotleft>\<tau> \<alpha>\<guillemotright> = \<guillemotleft>\<sigma> \<alpha>\<guillemotright>]\<close>
assumes \<open>\<And> \<alpha> v . \<not>[v \<Turnstile> \<guillemotleft>\<sigma> \<alpha>\<guillemotright>\<down>] \<Longrightarrow> [v \<Turnstile> \<not>\<guillemotleft>\<tau> \<alpha>\<guillemotright>\<down>]\<close>
shows \<open>AOT_model_id_def \<tau> \<sigma>\<close>
using assms
unfolding AOT_sem_denotes AOT_sem_eq AOT_sem_not
using AOT_model_id_def[THEN iffD2]
by metis
lemma AOT_sem_id_def2I:
assumes \<open>\<And> \<alpha> \<beta> v . [v \<Turnstile> \<guillemotleft>\<sigma> \<alpha> \<beta>\<guillemotright>\<down>] \<Longrightarrow> [v \<Turnstile> \<guillemotleft>\<tau> \<alpha> \<beta>\<guillemotright> = \<guillemotleft>\<sigma> \<alpha> \<beta>\<guillemotright>]\<close>
assumes \<open>\<And> \<alpha> \<beta> v . \<not>[v \<Turnstile> \<guillemotleft>\<sigma> \<alpha> \<beta>\<guillemotright>\<down>] \<Longrightarrow> [v \<Turnstile> \<not>\<guillemotleft>\<tau> \<alpha> \<beta>\<guillemotright>\<down>]\<close>
shows \<open>AOT_model_id_def (case_prod \<tau>) (case_prod \<sigma>)\<close>
apply (rule AOT_sem_id_defI)
using assms by (auto simp: AOT_sem_conj AOT_sem_not AOT_sem_eq AOT_sem_denotes
AOT_model_denotes_prod_def)
lemma AOT_sem_id_defE1:
assumes \<open>AOT_model_id_def \<tau> \<sigma>\<close>
and \<open>[v \<Turnstile> \<guillemotleft>\<sigma> \<alpha>\<guillemotright>\<down>]\<close>
shows \<open>[v \<Turnstile> \<guillemotleft>\<tau> \<alpha>\<guillemotright> = \<guillemotleft>\<sigma> \<alpha>\<guillemotright>]\<close>
using assms by (simp add: AOT_model_id_def AOT_sem_denotes AOT_sem_eq)
lemma AOT_sem_id_defE2:
assumes \<open>AOT_model_id_def \<tau> \<sigma>\<close>
and \<open>\<not>[v \<Turnstile> \<guillemotleft>\<sigma> \<alpha>\<guillemotright>\<down>]\<close>
shows \<open>\<not>[v \<Turnstile> \<guillemotleft>\<tau> \<alpha>\<guillemotright>\<down>]\<close>
using assms by (simp add: AOT_model_id_def AOT_sem_denotes AOT_sem_eq)
lemma AOT_sem_id_def0I:
assumes \<open>\<And> v . [v \<Turnstile> \<sigma>\<down>] \<Longrightarrow> [v \<Turnstile> \<tau> = \<sigma>]\<close>
and \<open>\<And> v . \<not>[v \<Turnstile> \<sigma>\<down>] \<Longrightarrow> [v \<Turnstile> \<not>\<tau>\<down>]\<close>
shows \<open>AOT_model_id_def (case_unit \<tau>) (case_unit \<sigma>)\<close>
apply (rule AOT_sem_id_defI)
using assms
by (simp_all add: AOT_sem_conj AOT_sem_eq AOT_sem_not AOT_sem_denotes
AOT_model_denotes_unit_def case_unit_Unity)
lemma AOT_sem_id_def0E1:
assumes \<open>AOT_model_id_def (case_unit \<tau>) (case_unit \<sigma>)\<close>
and \<open>[v \<Turnstile> \<sigma>\<down>]\<close>
shows \<open>[v \<Turnstile> \<tau> = \<sigma>]\<close>
by (metis (full_types) AOT_sem_id_defE1 assms(1) assms(2) case_unit_Unity)
lemma AOT_sem_id_def0E2:
assumes \<open>AOT_model_id_def (case_unit \<tau>) (case_unit \<sigma>)\<close>
and \<open>\<not>[v \<Turnstile> \<sigma>\<down>]\<close>
shows \<open>\<not>[v \<Turnstile> \<tau>\<down>]\<close>
by (metis AOT_sem_id_defE2 assms(1) assms(2) case_unit_Unity)
lemma AOT_sem_id_def0E3:
assumes \<open>AOT_model_id_def (case_unit \<tau>) (case_unit \<sigma>)\<close>
and \<open>[v \<Turnstile> \<sigma>\<down>]\<close>
shows \<open>[v \<Turnstile> \<tau>\<down>]\<close>
using AOT_sem_id_def0E1[OF assms]
by (simp add: AOT_sem_eq AOT_sem_denotes)
lemma AOT_sem_ordinary_def_denotes: \<open>[w \<Turnstile> [\<lambda>x \<diamond>[E!]x]\<down>]\<close>
unfolding AOT_sem_denotes AOT_model_lambda_denotes
by (auto simp: AOT_sem_dia AOT_model_concrete_equiv
AOT_sem_concrete AOT_sem_denotes)
lemma AOT_sem_abstract_def_denotes: \<open>[w \<Turnstile> [\<lambda>x \<not>\<diamond>[E!]x]\<down>]\<close>
unfolding AOT_sem_denotes AOT_model_lambda_denotes
by (auto simp: AOT_sem_dia AOT_model_concrete_equiv
AOT_sem_concrete AOT_sem_denotes AOT_sem_not)
text\<open>Relation identity is constructed using an auxiliary abstract projection
mechanism with suitable instantiations for @{typ \<kappa>} and products.\<close>
class AOT_RelationProjection =
fixes AOT_sem_proj_id :: \<open>'a::AOT_IndividualTerm \<Rightarrow> ('a \<Rightarrow> \<o>) \<Rightarrow> ('a \<Rightarrow> \<o>) \<Rightarrow> \<o>\<close>
assumes AOT_sem_proj_id_prop:
\<open>[v \<Turnstile> \<Pi> = \<Pi>'] =
[v \<Turnstile> \<Pi>\<down> & \<Pi>'\<down> & \<forall>\<alpha> (\<guillemotleft>AOT_sem_proj_id \<alpha> (\<lambda> \<tau> . \<guillemotleft>[\<Pi>]\<tau>\<guillemotright>) (\<lambda> \<tau> . \<guillemotleft>[\<Pi>']\<tau>\<guillemotright>)\<guillemotright>)]\<close>
and AOT_sem_proj_id_refl:
\<open>[v \<Turnstile> \<tau>\<down>] \<Longrightarrow> [v \<Turnstile> [\<lambda>\<nu>\<^sub>1...\<nu>\<^sub>n \<phi>{\<nu>\<^sub>1...\<nu>\<^sub>n}] = [\<lambda>\<nu>\<^sub>1...\<nu>\<^sub>n \<phi>{\<nu>\<^sub>1...\<nu>\<^sub>n}]] \<Longrightarrow>
[v \<Turnstile> \<guillemotleft>AOT_sem_proj_id \<tau> \<phi> \<phi>\<guillemotright>]\<close>
class AOT_UnaryRelationProjection = AOT_RelationProjection +
assumes AOT_sem_unary_proj_id:
\<open>AOT_sem_proj_id \<kappa> \<phi> \<psi> = \<guillemotleft>[\<lambda>\<nu>\<^sub>1...\<nu>\<^sub>n \<phi>{\<nu>\<^sub>1...\<nu>\<^sub>n}] = [\<lambda>\<nu>\<^sub>1...\<nu>\<^sub>n \<psi>{\<nu>\<^sub>1...\<nu>\<^sub>n}]\<guillemotright>\<close>
instantiation \<kappa> :: AOT_UnaryRelationProjection
begin
definition AOT_sem_proj_id_\<kappa> :: \<open>\<kappa> \<Rightarrow> (\<kappa> \<Rightarrow> \<o>) \<Rightarrow> (\<kappa> \<Rightarrow> \<o>) \<Rightarrow> \<o>\<close> where
\<open>AOT_sem_proj_id_\<kappa> \<kappa> \<phi> \<psi> = \<guillemotleft>[\<lambda>z \<phi>{z}] = [\<lambda>z \<psi>{z}]\<guillemotright>\<close>
instance proof
show \<open>[v \<Turnstile> \<Pi> = \<Pi>'] =
[v \<Turnstile> \<Pi>\<down> & \<Pi>'\<down> & \<forall>\<alpha> (\<guillemotleft>AOT_sem_proj_id \<alpha> (\<lambda> \<tau> . \<guillemotleft>[\<Pi>]\<tau>\<guillemotright>) (\<lambda> \<tau> . \<guillemotleft>[\<Pi>']\<tau>\<guillemotright>)\<guillemotright>)]\<close>
for v and \<Pi> \<Pi>' :: \<open><\<kappa>>\<close>
unfolding AOT_sem_proj_id_\<kappa>_def
by (simp add: AOT_sem_eq AOT_sem_conj AOT_sem_denotes AOT_sem_forall)
(metis AOT_sem_denotes AOT_model_denoting_ex AOT_sem_eq AOT_sem_lambda_eta)
next
show \<open>AOT_sem_proj_id \<kappa> \<phi> \<psi> = \<guillemotleft>[\<lambda>\<nu>\<^sub>1...\<nu>\<^sub>n \<phi>{\<nu>\<^sub>1...\<nu>\<^sub>n}] = [\<lambda>\<nu>\<^sub>1...\<nu>\<^sub>n \<psi>{\<nu>\<^sub>1...\<nu>\<^sub>n}]\<guillemotright>\<close>
for \<kappa> :: \<kappa> and \<phi> \<psi>
unfolding AOT_sem_proj_id_\<kappa>_def ..
next
show \<open>[v \<Turnstile> \<guillemotleft>AOT_sem_proj_id \<tau> \<phi> \<phi>\<guillemotright>]\<close>
if \<open>[v \<Turnstile> \<tau>\<down>]\<close> and \<open>[v \<Turnstile> [\<lambda>\<nu>\<^sub>1...\<nu>\<^sub>n \<phi>{\<nu>\<^sub>1...\<nu>\<^sub>n}] = [\<lambda>\<nu>\<^sub>1...\<nu>\<^sub>n \<phi>{\<nu>\<^sub>1...\<nu>\<^sub>n}]]\<close>
for \<tau> :: \<kappa> and v \<phi>
using that by (simp add: AOT_sem_proj_id_\<kappa>_def AOT_sem_eq)
qed
end
instantiation prod ::
("{AOT_UnaryRelationProjection, AOT_UnaryIndividualTerm}", AOT_RelationProjection)
AOT_RelationProjection
begin
definition AOT_sem_proj_id_prod :: \<open>'a\<times>'b \<Rightarrow> ('a\<times>'b \<Rightarrow> \<o>) \<Rightarrow> ('a\<times>'b \<Rightarrow> \<o>) \<Rightarrow> \<o>\<close> where
\<open>AOT_sem_proj_id_prod \<equiv> \<lambda> (x,y) \<phi> \<psi> . \<guillemotleft>[\<lambda>z \<guillemotleft>\<phi> (z,y)\<guillemotright>] = [\<lambda>z \<guillemotleft>\<psi> (z,y)\<guillemotright>] &
\<guillemotleft>AOT_sem_proj_id y (\<lambda> a . \<phi> (x,a)) (\<lambda> a . \<psi> (x,a))\<guillemotright>\<guillemotright>\<close>
instance proof
text\<open>This is the main proof that allows to derive the definition of n-ary
relation identity. We need to show that our defined projection identity
implies relation identity for relations on pairs of individual terms.\<close>
fix v and \<Pi> \<Pi>' :: \<open><'a\<times>'b>\<close>
have AOT_meta_proj_denotes1: \<open>AOT_model_denotes (Abs_rel (\<lambda>z. AOT_exe \<Pi> (z, \<beta>)))\<close>
if \<open>AOT_model_denotes \<Pi>\<close> for \<Pi> :: \<open><'a\<times>'b>\<close> and \<beta>
using that unfolding AOT_model_denotes_rel.rep_eq
apply (simp add: Abs_rel_inverse AOT_meta_prod_equivI(2) AOT_sem_denotes
that)
by (metis (no_types, lifting) AOT_meta_prod_equivI(2) AOT_model_denotes_prod_def
AOT_model_unary_regular AOT_sem_exe AOT_sem_exe_equiv case_prodD)
{
fix \<kappa> :: 'a and \<Pi> :: \<open><'a\<times>'b>\<close>
assume \<Pi>_denotes: \<open>AOT_model_denotes \<Pi>\<close>
assume \<alpha>_denotes: \<open>AOT_model_denotes \<kappa>\<close>
hence \<open>AOT_exe \<Pi> (\<kappa>, x) = AOT_exe \<Pi> (\<kappa>, y)\<close>
if \<open>AOT_model_term_equiv x y\<close> for x y :: 'b
by (simp add: AOT_meta_prod_equivI(1) AOT_sem_exe_equiv that)
moreover have \<open>AOT_model_denotes \<kappa>\<^sub>1'\<kappa>\<^sub>n'\<close>
if \<open>[w \<Turnstile> [\<Pi>]\<kappa> \<kappa>\<^sub>1'...\<kappa>\<^sub>n']\<close> for w \<kappa>\<^sub>1'\<kappa>\<^sub>n'
by (metis that AOT_model_denotes_prod_def AOT_sem_exe
AOT_sem_denotes case_prodD)
moreover {
fix x :: 'b
assume x_irregular: \<open>\<not>AOT_model_regular x\<close>
hence prod_irregular: \<open>\<not>AOT_model_regular (\<kappa>, x)\<close>
by (metis (no_types, lifting) AOT_model_irregular_nondenoting
AOT_model_regular_prod_def case_prodD)
hence \<open>(\<not>AOT_model_denotes \<kappa> \<or> \<not>AOT_model_regular x) \<and>
(AOT_model_denotes \<kappa> \<or> \<not>AOT_model_denotes x)\<close>
unfolding AOT_model_regular_prod_def by blast
hence x_nonden: \<open>\<not>AOT_model_regular x\<close>
by (simp add: \<alpha>_denotes)
have \<open>Rep_rel \<Pi> (\<kappa>, x) = AOT_model_irregular (Rep_rel \<Pi>) (\<kappa>, x)\<close>
using AOT_model_denotes_rel.rep_eq \<Pi>_denotes prod_irregular by blast
moreover have \<open>AOT_model_irregular (Rep_rel \<Pi>) (\<kappa>, x) =
AOT_model_irregular (\<lambda>z. Rep_rel \<Pi> (\<kappa>, z)) x\<close>
using \<Pi>_denotes x_irregular prod_irregular x_nonden
using AOT_model_irregular_prod_generic
apply (induct arbitrary: \<Pi> x rule: AOT_model_irregular_prod.induct)
by (auto simp: \<alpha>_denotes AOT_model_irregular_nondenoting
AOT_model_regular_prod_def AOT_meta_prod_equivI(2)
AOT_model_denotes_rel.rep_eq AOT_model_term_equiv_eps(1)
intro!: AOT_model_irregular_eqI)
ultimately have
\<open>AOT_exe \<Pi> (\<kappa>, x) = AOT_model_irregular (\<lambda>z. AOT_exe \<Pi> (\<kappa>, z)) x\<close>
unfolding AOT_sem_exe_denoting[simplified AOT_sem_denotes, OF \<Pi>_denotes]
by auto
}
ultimately have \<open>AOT_model_denotes (Abs_rel (\<lambda>z. AOT_exe \<Pi> (\<kappa>, z)))\<close>
by (simp add: Abs_rel_inverse AOT_model_denotes_rel.rep_eq)
} note AOT_meta_proj_denotes2 = this
{
fix \<kappa>\<^sub>1'\<kappa>\<^sub>n' :: 'b and \<Pi> :: \<open><'a\<times>'b>\<close>
assume \<Pi>_denotes: \<open>AOT_model_denotes \<Pi>\<close>
assume \<beta>_denotes: \<open>AOT_model_denotes \<kappa>\<^sub>1'\<kappa>\<^sub>n'\<close>
hence \<open>AOT_exe \<Pi> (x, \<kappa>\<^sub>1'\<kappa>\<^sub>n') = AOT_exe \<Pi> (y, \<kappa>\<^sub>1'\<kappa>\<^sub>n')\<close>
if \<open>AOT_model_term_equiv x y\<close> for x y :: 'a
by (simp add: AOT_meta_prod_equivI(2) AOT_sem_exe_equiv that)
moreover have \<open>AOT_model_denotes \<kappa>\<close>
if \<open>[w \<Turnstile> [\<Pi>]\<kappa> \<kappa>\<^sub>1'...\<kappa>\<^sub>n']\<close> for w \<kappa>
by (metis that AOT_model_denotes_prod_def AOT_sem_exe
AOT_sem_denotes case_prodD)
moreover {
fix x :: 'a
assume \<open>\<not>AOT_model_regular x\<close>
hence \<open>False\<close>
using AOT_model_unary_regular by blast
hence
\<open>AOT_exe \<Pi> (x,\<kappa>\<^sub>1'\<kappa>\<^sub>n') = AOT_model_irregular (\<lambda>z. AOT_exe \<Pi> (z,\<kappa>\<^sub>1'\<kappa>\<^sub>n')) x\<close>
unfolding AOT_sem_exe_denoting[simplified AOT_sem_denotes, OF \<Pi>_denotes]
by auto
}
ultimately have \<open>AOT_model_denotes (Abs_rel (\<lambda>z. AOT_exe \<Pi> (z,\<kappa>\<^sub>1'\<kappa>\<^sub>n')))\<close>
by (simp add: Abs_rel_inverse AOT_model_denotes_rel.rep_eq)
} note AOT_meta_proj_denotes1 = this
{
assume \<Pi>_denotes: \<open>AOT_model_denotes \<Pi>\<close>
assume \<Pi>'_denotes: \<open>AOT_model_denotes \<Pi>'\<close>
have \<Pi>_proj2_den: \<open>AOT_model_denotes (Abs_rel (\<lambda>z. Rep_rel \<Pi> (\<alpha>, z)))\<close>
if \<open>AOT_model_denotes \<alpha>\<close> for \<alpha>
using that AOT_meta_proj_denotes2[OF \<Pi>_denotes]
AOT_sem_exe_denoting[simplified AOT_sem_denotes,OF \<Pi>_denotes] by simp
have \<Pi>'_proj2_den: \<open>AOT_model_denotes (Abs_rel (\<lambda>z. Rep_rel \<Pi>' (\<alpha>, z)))\<close>
if \<open>AOT_model_denotes \<alpha>\<close> for \<alpha>
using that AOT_meta_proj_denotes2[OF \<Pi>'_denotes]
AOT_sem_exe_denoting[simplified AOT_sem_denotes,OF \<Pi>'_denotes] by simp
have \<Pi>_proj1_den: \<open>AOT_model_denotes (Abs_rel (\<lambda>z. Rep_rel \<Pi> (z, \<alpha>)))\<close>
if \<open>AOT_model_denotes \<alpha>\<close> for \<alpha>
using that AOT_meta_proj_denotes1[OF \<Pi>_denotes]
AOT_sem_exe_denoting[simplified AOT_sem_denotes,OF \<Pi>_denotes] by simp
have \<Pi>'_proj1_den: \<open>AOT_model_denotes (Abs_rel (\<lambda>z. Rep_rel \<Pi>' (z, \<alpha>)))\<close>
if \<open>AOT_model_denotes \<alpha>\<close> for \<alpha>
using that AOT_meta_proj_denotes1[OF \<Pi>'_denotes]
AOT_sem_exe_denoting[simplified AOT_sem_denotes,OF \<Pi>'_denotes] by simp
{
fix \<kappa> :: 'a and \<kappa>\<^sub>1'\<kappa>\<^sub>n' :: 'b
assume \<open>\<Pi> = \<Pi>'\<close>
assume \<open>AOT_model_denotes (\<kappa>,\<kappa>\<^sub>1'\<kappa>\<^sub>n')\<close>
hence \<open>AOT_model_denotes \<kappa>\<close> and beta_denotes: \<open>AOT_model_denotes \<kappa>\<^sub>1'\<kappa>\<^sub>n'\<close>
by (auto simp: AOT_model_denotes_prod_def)
have \<open>AOT_model_denotes \<guillemotleft>[\<lambda>z [\<Pi>]z \<kappa>\<^sub>1'...\<kappa>\<^sub>n']\<guillemotright>\<close>
by (rule AOT_model_lambda_denotes[THEN iffD2])
(metis AOT_sem_exe_denoting AOT_meta_prod_equivI(2)
AOT_model_denotes_rel.rep_eq AOT_sem_denotes
AOT_sem_exe_denoting \<Pi>_denotes)
moreover have \<open>\<guillemotleft>[\<lambda>z [\<Pi>]z \<kappa>\<^sub>1'...\<kappa>\<^sub>n']\<guillemotright> = \<guillemotleft>[\<lambda>z [\<Pi>']z \<kappa>\<^sub>1'...\<kappa>\<^sub>n']\<guillemotright>\<close>
by (simp add: \<open>\<Pi> = \<Pi>'\<close>)
moreover have \<open>[v \<Turnstile> \<guillemotleft>AOT_sem_proj_id \<kappa>\<^sub>1'\<kappa>\<^sub>n' (\<lambda>\<kappa>\<^sub>1'\<kappa>\<^sub>n'. \<guillemotleft>[\<Pi>]\<kappa> \<kappa>\<^sub>1'...\<kappa>\<^sub>n'\<guillemotright>)
(\<lambda>\<kappa>\<^sub>1'\<kappa>\<^sub>n'. \<guillemotleft>[\<Pi>']\<kappa> \<kappa>\<^sub>1'...\<kappa>\<^sub>n'\<guillemotright>)\<guillemotright>]\<close>
unfolding \<open>\<Pi> = \<Pi>'\<close> using beta_denotes
by (rule AOT_sem_proj_id_refl[unfolded AOT_sem_denotes];
simp add: AOT_sem_denotes AOT_sem_eq AOT_model_lambda_denotes)
(metis AOT_meta_prod_equivI(1) AOT_model_denotes_rel.rep_eq
AOT_sem_exe AOT_sem_exe_denoting \<Pi>'_denotes)
ultimately have \<open>[v \<Turnstile> \<guillemotleft>AOT_sem_proj_id (\<kappa>,\<kappa>\<^sub>1'\<kappa>\<^sub>n') (\<lambda> \<kappa>\<^sub>1\<kappa>\<^sub>n . \<guillemotleft>[\<Pi>]\<kappa>\<^sub>1...\<kappa>\<^sub>n\<guillemotright>)
(\<lambda> \<kappa>\<^sub>1\<kappa>\<^sub>n . \<guillemotleft>[\<Pi>']\<kappa>\<^sub>1...\<kappa>\<^sub>n\<guillemotright>)\<guillemotright>]\<close>
unfolding AOT_sem_proj_id_prod_def
by (simp add: AOT_sem_denotes AOT_sem_conj AOT_sem_eq)
}
moreover {
assume \<open>\<And> \<alpha> . AOT_model_denotes \<alpha> \<Longrightarrow>
[v \<Turnstile> \<guillemotleft>AOT_sem_proj_id \<alpha> (\<lambda> \<kappa>\<^sub>1\<kappa>\<^sub>n . \<guillemotleft>[\<Pi>]\<kappa>\<^sub>1...\<kappa>\<^sub>n\<guillemotright>) (\<lambda> \<kappa>\<^sub>1\<kappa>\<^sub>n . \<guillemotleft>[\<Pi>']\<kappa>\<^sub>1...\<kappa>\<^sub>n\<guillemotright>)\<guillemotright>]\<close>
hence 0: \<open>AOT_model_denotes \<kappa> \<Longrightarrow> AOT_model_denotes \<kappa>\<^sub>1'\<kappa>\<^sub>n' \<Longrightarrow>
AOT_model_denotes \<guillemotleft>[\<lambda>z [\<Pi>]z \<kappa>\<^sub>1'...\<kappa>\<^sub>n']\<guillemotright> \<and>
AOT_model_denotes \<guillemotleft>[\<lambda>z [\<Pi>']z \<kappa>\<^sub>1'...\<kappa>\<^sub>n']\<guillemotright> \<and>
\<guillemotleft>[\<lambda>z [\<Pi>]z \<kappa>\<^sub>1'...\<kappa>\<^sub>n']\<guillemotright> = \<guillemotleft>[\<lambda>z [\<Pi>']z \<kappa>\<^sub>1'...\<kappa>\<^sub>n']\<guillemotright> \<and>
[v \<Turnstile> \<guillemotleft>AOT_sem_proj_id \<kappa>\<^sub>1'\<kappa>\<^sub>n' (\<lambda>\<kappa>\<^sub>1\<kappa>\<^sub>n. \<guillemotleft>[\<Pi>]\<kappa> \<kappa>\<^sub>1...\<kappa>\<^sub>n\<guillemotright>)
(\<lambda>\<kappa>\<^sub>1\<kappa>\<^sub>n. \<guillemotleft>[\<Pi>']\<kappa> \<kappa>\<^sub>1...\<kappa>\<^sub>n\<guillemotright>)\<guillemotright>]\<close> for \<kappa> \<kappa>\<^sub>1'\<kappa>\<^sub>n'
unfolding AOT_sem_proj_id_prod_def
by (auto simp: AOT_sem_denotes AOT_sem_conj AOT_sem_eq
AOT_model_denotes_prod_def)
obtain \<alpha>den :: 'a and \<beta>den :: 'b where
\<alpha>den: \<open>AOT_model_denotes \<alpha>den\<close> and \<beta>den: \<open>AOT_model_denotes \<beta>den\<close>
using AOT_model_denoting_ex by metis
{
fix \<kappa> :: 'a
assume \<alpha>denotes: \<open>AOT_model_denotes \<kappa>\<close>
have 1: \<open>[v \<Turnstile> \<guillemotleft>AOT_sem_proj_id \<kappa>\<^sub>1'\<kappa>\<^sub>n' (\<lambda>\<kappa>\<^sub>1'\<kappa>\<^sub>n'. \<guillemotleft>[\<Pi>]\<kappa> \<kappa>\<^sub>1'...\<kappa>\<^sub>n'\<guillemotright>)
(\<lambda>\<kappa>\<^sub>1'\<kappa>\<^sub>n'. \<guillemotleft>[\<Pi>']\<kappa> \<kappa>\<^sub>1'...\<kappa>\<^sub>n'\<guillemotright>)\<guillemotright>]\<close>
if \<open>AOT_model_denotes \<kappa>\<^sub>1'\<kappa>\<^sub>n'\<close> for \<kappa>\<^sub>1'\<kappa>\<^sub>n'
using that 0 using \<alpha>denotes by blast
hence \<open>[v \<Turnstile> \<guillemotleft>AOT_sem_proj_id \<beta> (\<lambda>z. Rep_rel \<Pi> (\<kappa>, z))
(\<lambda>z. Rep_rel \<Pi>' (\<kappa>, z))\<guillemotright>]\<close>
if \<open>AOT_model_denotes \<beta>\<close> for \<beta>
using that
unfolding AOT_sem_exe_denoting[simplified AOT_sem_denotes, OF \<Pi>_denotes]
AOT_sem_exe_denoting[simplified AOT_sem_denotes, OF \<Pi>'_denotes]
by blast
hence \<open>Abs_rel (\<lambda>z. Rep_rel \<Pi> (\<kappa>, z)) = Abs_rel (\<lambda>z. Rep_rel \<Pi>' (\<kappa>, z))\<close>
using AOT_sem_proj_id_prop[of v \<open>Abs_rel (\<lambda>z. Rep_rel \<Pi> (\<kappa>, z))\<close>
\<open>Abs_rel (\<lambda>z. Rep_rel \<Pi>' (\<kappa>, z))\<close>,
simplified AOT_sem_eq AOT_sem_conj AOT_sem_forall
AOT_sem_denotes, THEN iffD2]
\<Pi>_proj2_den[OF \<alpha>denotes] \<Pi>'_proj2_den[OF \<alpha>denotes]
unfolding AOT_sem_exe_denoting[simplified AOT_sem_denotes, OF \<Pi>_denotes]
AOT_sem_exe_denoting[simplified AOT_sem_denotes,
OF \<Pi>_proj2_den[OF \<alpha>denotes]]
AOT_sem_exe_denoting[simplified AOT_sem_denotes,
OF \<Pi>'_proj2_den[OF \<alpha>denotes]]
by (metis Abs_rel_inverse UNIV_I)
hence "Rep_rel \<Pi> (\<kappa>,\<beta>) = Rep_rel \<Pi>' (\<kappa>,\<beta>)" for \<beta>
by (simp add: Abs_rel_inject[simplified]) meson
} note \<alpha>denotes = this
{
fix \<kappa>\<^sub>1'\<kappa>\<^sub>n' :: 'b
assume \<beta>den: \<open>AOT_model_denotes \<kappa>\<^sub>1'\<kappa>\<^sub>n'\<close>
have 1: \<open>\<guillemotleft>[\<lambda>z [\<Pi>]z \<kappa>\<^sub>1'...\<kappa>\<^sub>n']\<guillemotright> = \<guillemotleft>[\<lambda>z [\<Pi>']z \<kappa>\<^sub>1'...\<kappa>\<^sub>n']\<guillemotright>\<close>
using 0 \<beta>den AOT_model_denoting_ex by blast
hence \<open>Abs_rel (\<lambda>z. Rep_rel \<Pi> (z, \<kappa>\<^sub>1'\<kappa>\<^sub>n')) =
Abs_rel (\<lambda>z. Rep_rel \<Pi>' (z, \<kappa>\<^sub>1'\<kappa>\<^sub>n'))\<close> (is \<open>?a = ?b\<close>)
apply (safe intro!: AOT_sem_proj_id_prop[of v \<open>?a\<close> \<open>?b\<close>,
simplified AOT_sem_eq AOT_sem_conj AOT_sem_forall
AOT_sem_denotes, THEN iffD2, THEN conjunct2, THEN conjunct2]
\<Pi>_proj1_den[OF \<beta>den] \<Pi>'_proj1_den[OF \<beta>den])
unfolding AOT_sem_exe_denoting[simplified AOT_sem_denotes, OF \<Pi>_denotes]
AOT_sem_exe_denoting[simplified AOT_sem_denotes, OF \<Pi>'_denotes]
AOT_sem_exe_denoting[simplified AOT_sem_denotes,
OF \<Pi>_proj1_den[OF \<beta>den]]
AOT_sem_exe_denoting[simplified AOT_sem_denotes,
OF \<Pi>'_proj1_den[OF \<beta>den]]
by (subst (0 1) Abs_rel_inverse; simp?)
(metis (no_types, lifting) AOT_model_denotes_rel.abs_eq
AOT_model_lambda_denotes AOT_sem_denotes AOT_sem_eq
AOT_sem_unary_proj_id \<Pi>_proj1_den[OF \<beta>den])
hence \<open>Rep_rel \<Pi> (x,\<kappa>\<^sub>1'\<kappa>\<^sub>n') = Rep_rel \<Pi>' (x,\<kappa>\<^sub>1'\<kappa>\<^sub>n')\<close> for x
by (simp add: Abs_rel_inject)
metis
} note \<beta>denotes = this
{
fix \<alpha> :: 'a and \<beta> :: 'b
assume \<open>AOT_model_regular (\<alpha>, \<beta>)\<close>
moreover {
assume \<open>AOT_model_denotes \<alpha> \<and> AOT_model_regular \<beta>\<close>
hence \<open>Rep_rel \<Pi> (\<alpha>,\<beta>) = Rep_rel \<Pi>' (\<alpha>,\<beta>)\<close>
using \<alpha>denotes by presburger
}
moreover {
assume \<open>\<not>AOT_model_denotes \<alpha> \<and> AOT_model_denotes \<beta>\<close>
hence \<open>Rep_rel \<Pi> (\<alpha>,\<beta>) = Rep_rel \<Pi>' (\<alpha>,\<beta>)\<close>
by (simp add: \<beta>denotes)
}
ultimately have \<open>Rep_rel \<Pi> (\<alpha>,\<beta>) = Rep_rel \<Pi>' (\<alpha>,\<beta>)\<close>
by (metis (no_types, lifting) AOT_model_regular_prod_def case_prodD)
}
hence \<open>Rep_rel \<Pi> = Rep_rel \<Pi>'\<close>
using \<Pi>_denotes[unfolded AOT_model_denotes_rel.rep_eq,
THEN conjunct2, THEN conjunct2, THEN spec, THEN mp]
using \<Pi>'_denotes[unfolded AOT_model_denotes_rel.rep_eq,
THEN conjunct2, THEN conjunct2, THEN spec, THEN mp]
using AOT_model_irregular_eqI[of \<open>Rep_rel \<Pi>\<close> \<open>Rep_rel \<Pi>'\<close> \<open>(_,_)\<close>]
using AOT_model_irregular_nondenoting by fastforce
hence \<open>\<Pi> = \<Pi>'\<close>
by (rule Rep_rel_inject[THEN iffD1])
}
ultimately have \<open>\<Pi> = \<Pi>' = (\<forall> \<kappa> . AOT_model_denotes \<kappa> \<longrightarrow>
[v \<Turnstile> \<guillemotleft>AOT_sem_proj_id \<kappa> (\<lambda> \<kappa>\<^sub>1\<kappa>\<^sub>n . \<guillemotleft>[\<Pi>]\<kappa>\<^sub>1...\<kappa>\<^sub>n\<guillemotright>)
(\<lambda> \<kappa>\<^sub>1\<kappa>\<^sub>n . \<guillemotleft>[\<Pi>']\<kappa>\<^sub>1...\<kappa>\<^sub>n\<guillemotright>)\<guillemotright>])\<close>
by auto
}
thus \<open>[v \<Turnstile> \<Pi> = \<Pi>'] = [v \<Turnstile> \<Pi>\<down> & \<Pi>'\<down> &
\<forall>\<alpha> (\<guillemotleft>AOT_sem_proj_id \<alpha> (\<lambda> \<kappa>\<^sub>1\<kappa>\<^sub>n . \<guillemotleft>[\<Pi>]\<kappa>\<^sub>1...\<kappa>\<^sub>n\<guillemotright>) (\<lambda> \<kappa>\<^sub>1\<kappa>\<^sub>n . \<guillemotleft>[\<Pi>']\<kappa>\<^sub>1...\<kappa>\<^sub>n\<guillemotright>)\<guillemotright>)]\<close>
by (auto simp: AOT_sem_eq AOT_sem_denotes AOT_sem_forall AOT_sem_conj)
next
fix v and \<phi> :: \<open>'a\<times>'b\<Rightarrow>\<o>\<close> and \<tau> :: \<open>'a\<times>'b\<close>
assume \<open>[v \<Turnstile> \<tau>\<down>]\<close>
moreover assume \<open>[v \<Turnstile> [\<lambda>z\<^sub>1...z\<^sub>n \<guillemotleft>\<phi> z\<^sub>1z\<^sub>n\<guillemotright>] = [\<lambda>z\<^sub>1...z\<^sub>n \<guillemotleft>\<phi> z\<^sub>1z\<^sub>n\<guillemotright>]]\<close>
ultimately show \<open>[v \<Turnstile> \<guillemotleft>AOT_sem_proj_id \<tau> \<phi> \<phi>\<guillemotright>]\<close>
unfolding AOT_sem_proj_id_prod_def
using AOT_sem_proj_id_refl[of v "snd \<tau>" "\<lambda>b. \<phi> (fst \<tau>, b)"]
by (auto simp: AOT_sem_eq AOT_sem_conj AOT_sem_denotes
AOT_model_denotes_prod_def AOT_model_lambda_denotes
AOT_meta_prod_equivI)
qed
end
text\<open>Sanity-check to verify that n-ary relation identity follows.\<close>
lemma \<open>[v \<Turnstile> \<Pi> = \<Pi>'] = [v \<Turnstile> \<Pi>\<down> & \<Pi>'\<down> & \<forall>x\<forall>y([\<lambda>z [\<Pi>]z y] = [\<lambda>z [\<Pi>']z y] &
[\<lambda>z [\<Pi>]x z] = [\<lambda>z [\<Pi>']x z])]\<close>
for \<Pi> :: \<open><\<kappa>\<times>\<kappa>>\<close>
by (auto simp: AOT_sem_proj_id_prop[of v \<Pi> \<Pi>'] AOT_sem_proj_id_prod_def
AOT_sem_conj AOT_sem_denotes AOT_sem_forall AOT_sem_unary_proj_id
AOT_model_denotes_prod_def)
lemma \<open>[v \<Turnstile> \<Pi> = \<Pi>'] = [v \<Turnstile> \<Pi>\<down> & \<Pi>'\<down> & \<forall>x\<^sub>1\<forall>x\<^sub>2\<forall>x\<^sub>3 (
[\<lambda>z [\<Pi>]z x\<^sub>2 x\<^sub>3] = [\<lambda>z [\<Pi>']z x\<^sub>2 x\<^sub>3] &
[\<lambda>z [\<Pi>]x\<^sub>1 z x\<^sub>3] = [\<lambda>z [\<Pi>']x\<^sub>1 z x\<^sub>3] &
[\<lambda>z [\<Pi>]x\<^sub>1 x\<^sub>2 z] = [\<lambda>z [\<Pi>']x\<^sub>1 x\<^sub>2 z])]\<close>
for \<Pi> :: \<open><\<kappa>\<times>\<kappa>\<times>\<kappa>>\<close>
by (auto simp: AOT_sem_proj_id_prop[of v \<Pi> \<Pi>'] AOT_sem_proj_id_prod_def
AOT_sem_conj AOT_sem_denotes AOT_sem_forall AOT_sem_unary_proj_id
AOT_model_denotes_prod_def)
lemma \<open>[v \<Turnstile> \<Pi> = \<Pi>'] = [v \<Turnstile> \<Pi>\<down> & \<Pi>'\<down> & \<forall>x\<^sub>1\<forall>x\<^sub>2\<forall>x\<^sub>3\<forall>x\<^sub>4 (
[\<lambda>z [\<Pi>]z x\<^sub>2 x\<^sub>3 x\<^sub>4] = [\<lambda>z [\<Pi>']z x\<^sub>2 x\<^sub>3 x\<^sub>4] &
[\<lambda>z [\<Pi>]x\<^sub>1 z x\<^sub>3 x\<^sub>4] = [\<lambda>z [\<Pi>']x\<^sub>1 z x\<^sub>3 x\<^sub>4] &
[\<lambda>z [\<Pi>]x\<^sub>1 x\<^sub>2 z x\<^sub>4] = [\<lambda>z [\<Pi>']x\<^sub>1 x\<^sub>2 z x\<^sub>4] &
[\<lambda>z [\<Pi>]x\<^sub>1 x\<^sub>2 x\<^sub>3 z] = [\<lambda>z [\<Pi>']x\<^sub>1 x\<^sub>2 x\<^sub>3 z])]\<close>
for \<Pi> :: \<open><\<kappa>\<times>\<kappa>\<times>\<kappa>\<times>\<kappa>>\<close>
by (auto simp: AOT_sem_proj_id_prop[of v \<Pi> \<Pi>'] AOT_sem_proj_id_prod_def
AOT_sem_conj AOT_sem_denotes AOT_sem_forall AOT_sem_unary_proj_id
AOT_model_denotes_prod_def)
text\<open>n-ary Encoding is constructed using a similar mechanism as n-ary relation
identity using an auxiliary notion of projection-encoding.\<close>
class AOT_Enc =
fixes AOT_enc :: \<open>'a \<Rightarrow> <'a::AOT_IndividualTerm> \<Rightarrow> \<o>\<close>
and AOT_proj_enc :: \<open>'a \<Rightarrow> ('a \<Rightarrow> \<o>) \<Rightarrow> \<o>\<close>
assumes AOT_sem_enc_denotes:
\<open>[v \<Turnstile> \<guillemotleft>AOT_enc \<kappa>\<^sub>1\<kappa>\<^sub>n \<Pi>\<guillemotright>] \<Longrightarrow> [v \<Turnstile> \<kappa>\<^sub>1...\<kappa>\<^sub>n\<down>] \<and> [v \<Turnstile> \<Pi>\<down>]\<close>
assumes AOT_sem_enc_proj_enc:
\<open>[v \<Turnstile> \<guillemotleft>AOT_enc \<kappa>\<^sub>1\<kappa>\<^sub>n \<Pi>\<guillemotright>] =
[v \<Turnstile> \<Pi>\<down> & \<guillemotleft>AOT_proj_enc \<kappa>\<^sub>1\<kappa>\<^sub>n (\<lambda> \<kappa>\<^sub>1\<kappa>\<^sub>n. \<guillemotleft>[\<Pi>]\<kappa>\<^sub>1...\<kappa>\<^sub>n\<guillemotright>)\<guillemotright>]\<close>
assumes AOT_sem_proj_enc_denotes:
\<open>[v \<Turnstile> \<guillemotleft>AOT_proj_enc \<kappa>\<^sub>1\<kappa>\<^sub>n \<phi>\<guillemotright>] \<Longrightarrow> [v \<Turnstile> \<kappa>\<^sub>1...\<kappa>\<^sub>n\<down>]\<close>
assumes AOT_sem_enc_nec:
\<open>[v \<Turnstile> \<guillemotleft>AOT_enc \<kappa>\<^sub>1\<kappa>\<^sub>n \<Pi>\<guillemotright>] \<Longrightarrow> [w \<Turnstile> \<guillemotleft>AOT_enc \<kappa>\<^sub>1\<kappa>\<^sub>n \<Pi>\<guillemotright>]\<close>
assumes AOT_sem_proj_enc_nec:
\<open>[v \<Turnstile> \<guillemotleft>AOT_proj_enc \<kappa>\<^sub>1\<kappa>\<^sub>n \<phi>\<guillemotright>] \<Longrightarrow> [w \<Turnstile> \<guillemotleft>AOT_proj_enc \<kappa>\<^sub>1\<kappa>\<^sub>n \<phi>\<guillemotright>]\<close>
assumes AOT_sem_universal_encoder:
\<open>\<exists> \<kappa>\<^sub>1\<kappa>\<^sub>n. [v \<Turnstile> \<kappa>\<^sub>1...\<kappa>\<^sub>n\<down>] \<and> (\<forall> \<Pi> . [v \<Turnstile> \<Pi>\<down>] \<longrightarrow> [v \<Turnstile> \<guillemotleft>AOT_enc \<kappa>\<^sub>1\<kappa>\<^sub>n \<Pi>\<guillemotright>]) \<and>
(\<forall> \<phi> . [v \<Turnstile> [\<lambda>z\<^sub>1...z\<^sub>n \<phi>{z\<^sub>1...z\<^sub>n}]\<down>] \<longrightarrow> [v \<Turnstile> \<guillemotleft>AOT_proj_enc \<kappa>\<^sub>1\<kappa>\<^sub>n \<phi>\<guillemotright>])\<close>
AOT_syntax_print_translations
"_AOT_enc (_AOT_individual_term \<kappa>) (_AOT_relation_term \<Pi>)" <= "CONST AOT_enc \<kappa> \<Pi>"
context AOT_meta_syntax
begin
notation AOT_enc ("\<^bold>\<lbrace>_,_\<^bold>\<rbrace>")
end
context AOT_no_meta_syntax
begin
no_notation AOT_enc ("\<^bold>\<lbrace>_,_\<^bold>\<rbrace>")
end
text\<open>Unary encoding additionally has to satisfy the axioms of unary encoding and
the definition of property identity.\<close>
class AOT_UnaryEnc = AOT_UnaryIndividualTerm +
assumes AOT_sem_enc_eq: \<open>[v \<Turnstile> \<Pi>\<down> & \<Pi>'\<down> & \<box>\<forall>\<nu> (\<nu>[\<Pi>] \<equiv> \<nu>[\<Pi>']) \<rightarrow> \<Pi> = \<Pi>']\<close>
and AOT_sem_A_objects: \<open>[v \<Turnstile> \<exists>x (\<not>\<diamond>[E!]x & \<forall>F (x[F] \<equiv> \<phi>{F}))]\<close>
and AOT_sem_unary_proj_enc: \<open>AOT_proj_enc x \<psi> = AOT_enc x \<guillemotleft>[\<lambda>z \<psi>{z}]\<guillemotright>\<close>
and AOT_sem_nocoder: \<open>[v \<Turnstile> [E!]\<kappa>] \<Longrightarrow> \<not>[w \<Turnstile> \<guillemotleft>AOT_enc \<kappa> \<Pi>\<guillemotright>]\<close>
and AOT_sem_ind_eq: \<open>([v \<Turnstile> \<kappa>\<down>] \<and> [v \<Turnstile> \<kappa>'\<down>] \<and> \<kappa> = (\<kappa>')) =
(([v \<Turnstile> [\<lambda>x \<diamond>[E!]x]\<kappa>] \<and>
[v \<Turnstile> [\<lambda>x \<diamond>[E!]x]\<kappa>'] \<and>
(\<forall> v \<Pi> . [v \<Turnstile> \<Pi>\<down>] \<longrightarrow> [v \<Turnstile> [\<Pi>]\<kappa>] = [v \<Turnstile> [\<Pi>]\<kappa>']))
\<or> ([v \<Turnstile> [\<lambda>x \<not>\<diamond>[E!]x]\<kappa>] \<and>
[v \<Turnstile> [\<lambda>x \<not>\<diamond>[E!]x]\<kappa>'] \<and>
(\<forall> v \<Pi> . [v \<Turnstile> \<Pi>\<down>] \<longrightarrow> [v \<Turnstile> \<kappa>[\<Pi>]] = [v \<Turnstile> \<kappa>'[\<Pi>]])))\<close>
(* only extended models *)
and AOT_sem_enc_indistinguishable_all:
\<open>AOT_ExtendedModel \<Longrightarrow>
[v \<Turnstile> [\<lambda>x \<not>\<diamond>[E!]x]\<kappa>] \<Longrightarrow>
[v \<Turnstile> [\<lambda>x \<not>\<diamond>[E!]x]\<kappa>'] \<Longrightarrow>
(\<And> \<Pi>' . [v \<Turnstile> \<Pi>'\<down>] \<Longrightarrow> (\<And> w . [w \<Turnstile> [\<Pi>']\<kappa>] = [w \<Turnstile> [\<Pi>']\<kappa>'])) \<Longrightarrow>
[v \<Turnstile> \<Pi>\<down>] \<Longrightarrow>
(\<And> \<Pi>' . [v \<Turnstile> \<Pi>'\<down>] \<Longrightarrow> (\<And> \<kappa>\<^sub>0 . [v \<Turnstile> [\<lambda>x \<diamond>[E!]x]\<kappa>\<^sub>0] \<Longrightarrow>
(\<And> w . [w \<Turnstile> [\<Pi>']\<kappa>\<^sub>0] = [w \<Turnstile> [\<Pi>]\<kappa>\<^sub>0])) \<Longrightarrow> [v \<Turnstile> \<kappa>[\<Pi>']]) \<Longrightarrow>
(\<And> \<Pi>' . [v \<Turnstile> \<Pi>'\<down>] \<Longrightarrow> (\<And> \<kappa>\<^sub>0 . [v \<Turnstile> [\<lambda>x \<diamond>[E!]x]\<kappa>\<^sub>0] \<Longrightarrow>
(\<And> w . [w \<Turnstile> [\<Pi>']\<kappa>\<^sub>0] = [w \<Turnstile> [\<Pi>]\<kappa>\<^sub>0])) \<Longrightarrow> [v \<Turnstile> \<kappa>'[\<Pi>']])\<close>
and AOT_sem_enc_indistinguishable_ex:
\<open>AOT_ExtendedModel \<Longrightarrow>
[v \<Turnstile> [\<lambda>x \<not>\<diamond>[E!]x]\<kappa>] \<Longrightarrow>
[v \<Turnstile> [\<lambda>x \<not>\<diamond>[E!]x]\<kappa>'] \<Longrightarrow>
(\<And> \<Pi>' . [v \<Turnstile> \<Pi>'\<down>] \<Longrightarrow> (\<And> w . [w \<Turnstile> [\<Pi>']\<kappa>] = [w \<Turnstile> [\<Pi>']\<kappa>'])) \<Longrightarrow>
[v \<Turnstile> \<Pi>\<down>] \<Longrightarrow>
\<exists> \<Pi>' . [v \<Turnstile> \<Pi>'\<down>] \<and> [v \<Turnstile> \<kappa>[\<Pi>']] \<and>
(\<forall> \<kappa>\<^sub>0 . [v \<Turnstile> [\<lambda>x \<diamond>[E!]x]\<kappa>\<^sub>0] \<longrightarrow>
(\<forall> w . [w \<Turnstile> [\<Pi>']\<kappa>\<^sub>0] = [w \<Turnstile> [\<Pi>]\<kappa>\<^sub>0])) \<Longrightarrow>
\<exists> \<Pi>' . [v \<Turnstile> \<Pi>'\<down>] \<and> [v \<Turnstile> \<kappa>'[\<Pi>']] \<and>
(\<forall> \<kappa>\<^sub>0 . [v \<Turnstile> [\<lambda>x \<diamond>[E!]x]\<kappa>\<^sub>0] \<longrightarrow>
(\<forall> w . [w \<Turnstile> [\<Pi>']\<kappa>\<^sub>0] = [w \<Turnstile> [\<Pi>]\<kappa>\<^sub>0]))\<close>
text\<open>We specify encoding to align with the model-construction of encoding.\<close>
consts AOT_sem_enc_\<kappa> :: \<open>\<kappa> \<Rightarrow> <\<kappa>> \<Rightarrow> \<o>\<close>
specification(AOT_sem_enc_\<kappa>)
AOT_sem_enc_\<kappa>:
\<open>[v \<Turnstile> \<guillemotleft>AOT_sem_enc_\<kappa> \<kappa> \<Pi>\<guillemotright>] =
(AOT_model_denotes \<kappa> \<and> AOT_model_denotes \<Pi> \<and> AOT_model_enc \<kappa> \<Pi>)\<close>
by (rule exI[where x=\<open>\<lambda> \<kappa> \<Pi> . \<epsilon>\<^sub>\<o> w . AOT_model_denotes \<kappa> \<and> AOT_model_denotes \<Pi> \<and>
AOT_model_enc \<kappa> \<Pi>\<close>])
(simp add: AOT_model_proposition_choice_simp AOT_model_enc_\<kappa>_def \<kappa>.case_eq_if)
text\<open>We show that @{typ \<kappa>} satisfies the generic properties of n-ary encoding.\<close>
instantiation \<kappa> :: AOT_Enc
begin
definition AOT_enc_\<kappa> :: \<open>\<kappa> \<Rightarrow> <\<kappa>> \<Rightarrow> \<o>\<close> where
\<open>AOT_enc_\<kappa> \<equiv> AOT_sem_enc_\<kappa>\<close>
definition AOT_proj_enc_\<kappa> :: \<open>\<kappa> \<Rightarrow> (\<kappa> \<Rightarrow> \<o>) \<Rightarrow> \<o>\<close> where
\<open>AOT_proj_enc_\<kappa> \<equiv> \<lambda> \<kappa> \<phi> . AOT_enc \<kappa> \<guillemotleft>[\<lambda>z \<guillemotleft>\<phi> z\<guillemotright>]\<guillemotright>\<close>
lemma AOT_enc_\<kappa>_meta:
\<open>[v \<Turnstile> \<kappa>[\<Pi>]] = (AOT_model_denotes \<kappa> \<and> AOT_model_denotes \<Pi> \<and> AOT_model_enc \<kappa> \<Pi>)\<close>
for \<kappa>::\<kappa>
using AOT_sem_enc_\<kappa> unfolding AOT_enc_\<kappa>_def by auto
instance proof
fix v and \<kappa> :: \<kappa> and \<Pi>
show \<open>[v \<Turnstile> \<guillemotleft>AOT_enc \<kappa> \<Pi>\<guillemotright>] \<Longrightarrow> [v \<Turnstile> \<kappa>\<down>] \<and> [v \<Turnstile> \<Pi>\<down>]\<close>
unfolding AOT_sem_denotes
using AOT_enc_\<kappa>_meta by blast
next
fix v and \<kappa> :: \<kappa> and \<Pi>
show \<open>[v \<Turnstile> \<kappa>[\<Pi>]] = [v \<Turnstile> \<Pi>\<down> & \<guillemotleft>AOT_proj_enc \<kappa> (\<lambda> \<kappa>'. \<guillemotleft>[\<Pi>]\<kappa>'\<guillemotright>)\<guillemotright>]\<close>
proof
assume enc: \<open>[v \<Turnstile> \<kappa>[\<Pi>]]\<close>
hence \<Pi>_denotes: \<open>AOT_model_denotes \<Pi>\<close>
by (simp add: AOT_enc_\<kappa>_meta)
hence \<Pi>_eta_denotes: \<open>AOT_model_denotes \<guillemotleft>[\<lambda>z [\<Pi>]z]\<guillemotright>\<close>
using AOT_sem_denotes AOT_sem_eq AOT_sem_lambda_eta by metis
show \<open>[v \<Turnstile> \<Pi>\<down> & \<guillemotleft>AOT_proj_enc \<kappa> (\<lambda> \<kappa>. \<guillemotleft>[\<Pi>]\<kappa>\<guillemotright>)\<guillemotright>]\<close>
using AOT_sem_lambda_eta[simplified AOT_sem_denotes AOT_sem_eq, OF \<Pi>_denotes]
using \<Pi>_eta_denotes \<Pi>_denotes
by (simp add: AOT_sem_conj AOT_sem_denotes AOT_proj_enc_\<kappa>_def enc)
next
assume \<open>[v \<Turnstile> \<Pi>\<down> & \<guillemotleft>AOT_proj_enc \<kappa> (\<lambda> \<kappa>. \<guillemotleft>[\<Pi>]\<kappa>\<guillemotright>)\<guillemotright>]\<close>
hence \<Pi>_denotes: "AOT_model_denotes \<Pi>" and eta_enc: "[v \<Turnstile> \<kappa>[\<lambda>z [\<Pi>]z]]"
by (auto simp: AOT_sem_conj AOT_sem_denotes AOT_proj_enc_\<kappa>_def)
thus \<open>[v \<Turnstile> \<kappa>[\<Pi>]]\<close>
using AOT_sem_lambda_eta[simplified AOT_sem_denotes AOT_sem_eq, OF \<Pi>_denotes]
by auto
qed
next
show \<open>[v \<Turnstile> \<guillemotleft>AOT_proj_enc \<kappa> \<phi>\<guillemotright>] \<Longrightarrow> [v \<Turnstile> \<kappa>\<down>]\<close> for v and \<kappa> :: \<kappa> and \<phi>
by (simp add: AOT_enc_\<kappa>_meta AOT_sem_denotes AOT_proj_enc_\<kappa>_def)
next
fix v w and \<kappa> :: \<kappa> and \<Pi>
assume \<open>[v \<Turnstile> \<kappa>[\<Pi>]]\<close>
thus \<open>[w \<Turnstile> \<kappa>[\<Pi>]]\<close>
by (simp add: AOT_enc_\<kappa>_meta)
next
fix v w and \<kappa> :: \<kappa> and \<phi>
assume \<open>[v \<Turnstile> \<guillemotleft>AOT_proj_enc \<kappa> \<phi>\<guillemotright>]\<close>
thus \<open>[w \<Turnstile> \<guillemotleft>AOT_proj_enc \<kappa> \<phi>\<guillemotright>]\<close>
by (simp add: AOT_enc_\<kappa>_meta AOT_proj_enc_\<kappa>_def)
next
show \<open>\<exists>\<kappa>::\<kappa>. [v \<Turnstile> \<kappa>\<down>] \<and> (\<forall> \<Pi> . [v \<Turnstile> \<Pi>\<down>] \<longrightarrow> [v \<Turnstile> \<kappa>[\<Pi>]]) \<and>
(\<forall> \<phi> . [v \<Turnstile> [\<lambda>z \<phi>{z}]\<down>] \<longrightarrow> [v \<Turnstile> \<guillemotleft>AOT_proj_enc \<kappa> \<phi>\<guillemotright>])\<close> for v
by (rule exI[where x=\<open>\<alpha>\<kappa> UNIV\<close>])
(simp add: AOT_sem_denotes AOT_enc_\<kappa>_meta AOT_model_enc_\<kappa>_def
AOT_model_denotes_\<kappa>_def AOT_proj_enc_\<kappa>_def)
qed
end
text\<open>We show that @{typ \<kappa>} satisfies the properties of unary encoding.\<close>
instantiation \<kappa> :: AOT_UnaryEnc
begin
instance proof
fix v and \<Pi> \<Pi>' :: \<open><\<kappa>>\<close>
show \<open>[v \<Turnstile> \<Pi>\<down> & \<Pi>'\<down> & \<box>\<forall>\<nu> (\<nu>[\<Pi>] \<equiv> \<nu>[\<Pi>']) \<rightarrow> \<Pi> = \<Pi>']\<close>
apply (simp add: AOT_sem_forall AOT_sem_eq AOT_sem_imp AOT_sem_equiv
AOT_enc_\<kappa>_meta AOT_sem_conj AOT_sem_denotes AOT_sem_box)
using AOT_meta_A_objects_\<kappa> by fastforce
next
fix v and \<phi>:: \<open><\<kappa>> \<Rightarrow> \<o>\<close>
show \<open>[v \<Turnstile> \<exists>x (\<not>\<diamond>[E!]x & \<forall>F (x[F] \<equiv> \<phi>{F}))]\<close>
using AOT_model_A_objects[of "\<lambda> \<Pi> . [v \<Turnstile> \<phi>{\<Pi>}]"]
by (auto simp: AOT_sem_denotes AOT_sem_exists AOT_sem_conj AOT_sem_not
AOT_sem_dia AOT_sem_concrete AOT_enc_\<kappa>_meta AOT_sem_equiv
AOT_sem_forall)
next
show \<open>AOT_proj_enc x \<psi> = AOT_enc x (AOT_lambda \<psi>)\<close> for x :: \<kappa> and \<psi>
by (simp add: AOT_proj_enc_\<kappa>_def)
next
show \<open>[v \<Turnstile> [E!]\<kappa>] \<Longrightarrow> \<not> [w \<Turnstile> \<kappa>[\<Pi>]]\<close> for v w and \<kappa> :: \<kappa> and \<Pi>
by (simp add: AOT_enc_\<kappa>_meta AOT_sem_concrete AOT_model_nocoder)
next
fix v and \<kappa> \<kappa>' :: \<kappa>
show \<open>([v \<Turnstile> \<kappa>\<down>] \<and> [v \<Turnstile> \<kappa>'\<down>] \<and> \<kappa> = \<kappa>') =
(([v \<Turnstile> [\<lambda>x \<diamond>[E!]x]\<kappa>] \<and>
[v \<Turnstile> [\<lambda>x \<diamond>[E!]x]\<kappa>'] \<and>
(\<forall> v \<Pi> . [v \<Turnstile> \<Pi>\<down>] \<longrightarrow> [v \<Turnstile> [\<Pi>]\<kappa>] = [v \<Turnstile> [\<Pi>]\<kappa>']))
\<or> ([v \<Turnstile> [\<lambda>x \<not>\<diamond>[E!]x]\<kappa>] \<and>
[v \<Turnstile> [\<lambda>x \<not>\<diamond>[E!]x]\<kappa>'] \<and>
(\<forall> v \<Pi> . [v \<Turnstile> \<Pi>\<down>] \<longrightarrow> [v \<Turnstile> \<kappa>[\<Pi>]] = [v \<Turnstile> \<kappa>'[\<Pi>]])))\<close>
(is \<open>?lhs = (?ordeq \<or> ?abseq)\<close>)
proof -
{
assume 0: \<open>[v \<Turnstile> \<kappa>\<down>] \<and> [v \<Turnstile> \<kappa>'\<down>] \<and> \<kappa> = \<kappa>'\<close>
{
assume \<open>is_\<omega>\<kappa> \<kappa>'\<close>
hence \<open>[v \<Turnstile> [\<lambda>x \<diamond>[E!]x]\<kappa>']\<close>
apply (subst AOT_sem_lambda_beta[OF AOT_sem_ordinary_def_denotes, of v \<kappa>'])
apply (simp add: "0")
apply (simp add: AOT_sem_dia)
using AOT_sem_concrete AOT_model_\<omega>_concrete_in_some_world is_\<omega>\<kappa>_def by force
hence \<open>?ordeq\<close> unfolding 0[THEN conjunct2, THEN conjunct2] by auto
}
moreover {
assume \<open>is_\<alpha>\<kappa> \<kappa>'\<close>
hence \<open>[v \<Turnstile> [\<lambda>x \<not>\<diamond>[E!]x]\<kappa>']\<close>
apply (subst AOT_sem_lambda_beta[OF AOT_sem_abstract_def_denotes, of v \<kappa>'])
apply (simp add: "0")
apply (simp add: AOT_sem_not AOT_sem_dia)
using AOT_sem_concrete is_\<alpha>\<kappa>_def by force
hence \<open>?abseq\<close> unfolding 0[THEN conjunct2, THEN conjunct2] by auto
}
ultimately have \<open>?ordeq \<or> ?abseq\<close>
by (meson "0" AOT_sem_denotes AOT_model_denotes_\<kappa>_def \<kappa>.exhaust_disc)
}
moreover {
assume ordeq: \<open>?ordeq\<close>
hence \<kappa>_denotes: \<open>[v \<Turnstile> \<kappa>\<down>]\<close> and \<kappa>'_denotes: \<open>[v \<Turnstile> \<kappa>'\<down>]\<close>
by (simp add: AOT_sem_denotes AOT_sem_exe)+
hence \<open>is_\<omega>\<kappa> \<kappa>\<close> and \<open>is_\<omega>\<kappa> \<kappa>'\<close>
by (metis AOT_model_concrete_\<kappa>.simps(2) AOT_model_denotes_\<kappa>_def
AOT_sem_concrete AOT_sem_denotes AOT_sem_dia AOT_sem_lambda_beta
AOT_sem_ordinary_def_denotes \<kappa>.collapse(2) \<kappa>.exhaust_disc ordeq)+
have denotes: \<open>[v \<Turnstile> [\<lambda>z \<guillemotleft>\<epsilon>\<^sub>\<o> w . \<kappa>\<upsilon> z = \<kappa>\<upsilon> \<kappa>\<guillemotright>]\<down>]\<close>
unfolding AOT_sem_denotes AOT_model_lambda_denotes
by (simp add: AOT_model_term_equiv_\<kappa>_def)
hence "[v \<Turnstile> [\<lambda>z \<guillemotleft>\<epsilon>\<^sub>\<o> w . \<kappa>\<upsilon> z = \<kappa>\<upsilon> \<kappa>\<guillemotright>]\<kappa>] = [v \<Turnstile> [\<lambda>z \<guillemotleft>\<epsilon>\<^sub>\<o> w . \<kappa>\<upsilon> z = \<kappa>\<upsilon> \<kappa>\<guillemotright>]\<kappa>']"
using ordeq by (simp add: AOT_sem_denotes)
hence \<open>[v \<Turnstile> \<guillemotleft>\<kappa>\<guillemotright>\<down>] \<and> [v \<Turnstile> \<guillemotleft>\<kappa>'\<guillemotright>\<down>] \<and> \<kappa> = \<kappa>'\<close>
unfolding AOT_sem_lambda_beta[OF denotes, OF \<kappa>_denotes]
AOT_sem_lambda_beta[OF denotes, OF \<kappa>'_denotes]
using \<kappa>'_denotes \<open>is_\<omega>\<kappa> \<kappa>'\<close> \<open>is_\<omega>\<kappa> \<kappa>\<close> is_\<omega>\<kappa>_def
AOT_model_proposition_choice_simp by force
}
moreover {
assume 0: \<open>?abseq\<close>
hence \<kappa>_denotes: \<open>[v \<Turnstile> \<kappa>\<down>]\<close> and \<kappa>'_denotes: \<open>[v \<Turnstile> \<kappa>'\<down>]\<close>
by (simp add: AOT_sem_denotes AOT_sem_exe)+
hence \<open>\<not>is_\<omega>\<kappa> \<kappa>\<close> and \<open>\<not>is_\<omega>\<kappa> \<kappa>'\<close>
by (metis AOT_model_\<omega>_concrete_in_some_world AOT_model_concrete_\<kappa>.simps(1)
AOT_sem_concrete AOT_sem_dia AOT_sem_exe AOT_sem_lambda_beta
AOT_sem_not \<kappa>.collapse(1) 0)+
hence \<open>is_\<alpha>\<kappa> \<kappa>\<close> and \<open>is_\<alpha>\<kappa> \<kappa>'\<close>
by (meson AOT_sem_denotes AOT_model_denotes_\<kappa>_def \<kappa>.exhaust_disc
\<kappa>_denotes \<kappa>'_denotes)+
then obtain x y where \<kappa>_def: \<open>\<kappa> = \<alpha>\<kappa> x\<close> and \<kappa>'_def: \<open>\<kappa>' = \<alpha>\<kappa> y\<close>
using is_\<alpha>\<kappa>_def by auto
{
fix r
assume \<open>r \<in> x\<close>
hence \<open>[v \<Turnstile> \<kappa>[\<guillemotleft>urrel_to_rel r\<guillemotright>]]\<close>
unfolding \<kappa>_def
unfolding AOT_enc_\<kappa>_meta
unfolding AOT_model_enc_\<kappa>_def
apply (simp add: AOT_model_denotes_\<kappa>_def)
by (metis (mono_tags) AOT_rel_equiv_def Quotient_def urrel_quotient)
hence \<open>[v \<Turnstile> \<kappa>'[\<guillemotleft>urrel_to_rel r\<guillemotright>]]\<close>
using AOT_enc_\<kappa>_meta 0 by (metis AOT_sem_enc_denotes)
hence \<open>r \<in> y\<close>
unfolding \<kappa>'_def
unfolding AOT_enc_\<kappa>_meta
unfolding AOT_model_enc_\<kappa>_def
apply (simp add: AOT_model_denotes_\<kappa>_def)
using Quotient_abs_rep urrel_quotient by fastforce
}
moreover {
fix r
assume \<open>r \<in> y\<close>
hence \<open>[v \<Turnstile> \<kappa>'[\<guillemotleft>urrel_to_rel r\<guillemotright>]]\<close>
unfolding \<kappa>'_def
unfolding AOT_enc_\<kappa>_meta
unfolding AOT_model_enc_\<kappa>_def
apply (simp add: AOT_model_denotes_\<kappa>_def)
by (metis (mono_tags) AOT_rel_equiv_def Quotient_def urrel_quotient)
hence \<open>[v \<Turnstile> \<kappa>[\<guillemotleft>urrel_to_rel r\<guillemotright>]]\<close>
using AOT_enc_\<kappa>_meta 0 by (metis AOT_sem_enc_denotes)
hence \<open>r \<in> x\<close>
unfolding \<kappa>_def
unfolding AOT_enc_\<kappa>_meta
unfolding AOT_model_enc_\<kappa>_def
apply (simp add: AOT_model_denotes_\<kappa>_def)
using Quotient_abs_rep urrel_quotient by fastforce
}
ultimately have "x = y" by blast
hence \<open>[v \<Turnstile> \<kappa>\<down>] \<and> [v \<Turnstile> \<kappa>'\<down>] \<and> \<kappa> = \<kappa>'\<close>
using \<kappa>'_def \<kappa>'_denotes \<kappa>_def by blast
}
ultimately show ?thesis
unfolding AOT_sem_denotes
by auto
qed
(* Only extended model *)
next
fix v and \<kappa> \<kappa>' :: \<kappa> and \<Pi> \<Pi>' :: \<open><\<kappa>>\<close>
assume ext: \<open>AOT_ExtendedModel\<close>
assume \<open>[v \<Turnstile> [\<lambda>x \<not>\<diamond>[E!]x]\<kappa>]\<close>
hence \<open>is_\<alpha>\<kappa> \<kappa>\<close>
by (metis AOT_model_\<omega>_concrete_in_some_world AOT_model_concrete_\<kappa>.simps(1)
AOT_model_denotes_\<kappa>_def AOT_sem_concrete AOT_sem_denotes AOT_sem_dia
AOT_sem_exe AOT_sem_lambda_beta AOT_sem_not \<kappa>.collapse(1) \<kappa>.exhaust_disc)
hence \<kappa>_abs: \<open>\<not>(\<exists> w . AOT_model_concrete w \<kappa>)\<close>
using is_\<alpha>\<kappa>_def by fastforce
have \<kappa>_den: \<open>AOT_model_denotes \<kappa>\<close>
by (simp add: AOT_model_denotes_\<kappa>_def \<kappa>.distinct_disc(5) \<open>is_\<alpha>\<kappa> \<kappa>\<close>)
assume \<open>[v \<Turnstile> [\<lambda>x \<not>\<diamond>[E!]x]\<kappa>']\<close>
hence \<open>is_\<alpha>\<kappa> \<kappa>'\<close>
by (metis AOT_model_\<omega>_concrete_in_some_world AOT_model_concrete_\<kappa>.simps(1)
AOT_model_denotes_\<kappa>_def AOT_sem_concrete AOT_sem_denotes AOT_sem_dia