-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathekv26_SDext_Verilog-A.va
841 lines (835 loc) · 37.3 KB
/
ekv26_SDext_Verilog-A.va
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
/*
EKV MOS model version 2.6 rev.15 with documentation at: http://ekv.epfl.ch
Matthias Bucher, Christophe Lallement, Christian Enz, Fabien Theodoloz, Francois Krummenacher
Electronics Laboratories, Swiss Federal Institute of Technology Lausanne, Switzerland
This Verilog-A was developed by Wladek Grabinski with modifications
by Tiburon Design Automation (www.tiburon-da.com).
This software has been provided pursuant to a License Agreement containing restrictions on its use.
It may not be copied or distributed in any form or medium, disclosed to third parties,
reverse engineered or used in any manner not provided for in said License Agreement
except with the prior written authorization.
Licensed under the Educational Community License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://opensource.org/licenses/ECL-2.0
Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
either express or implied. See the License for the specific language governing permissions
and limitations under the License.
$RCSfile: ekv.va,v $ $Revision: 1.9 $ $Date: 2003/12/17 01:20:10 $
$RCSfile: ekv.va,v $ $Revision: 2.6.15 $ $Date: 2020/05/29 11:50:10 $
*/
/*
`include "disciplines.vams"
`include "constants.vams"
`include "compact.vams"
*/
// includes: in case we do not want to include any other file [AB:040902]
// we can just add the following section in this file
// AB: i hope this may help our code to be easily transported
//----------------------------------------
// from disciplines.h we need:
// Electrical
// Current in amperes
nature Current
units = "A";
access = I;
idt_nature = Charge;
`ifdef CURRENT_ABSTOL
abstol = `CURRENT_ABSTOL;
`else
abstol = 1e-12;
`endif
endnature
// Charge in coulombs
nature Charge
units = "coul";
access = Q;
ddt_nature = Current;
`ifdef CHARGE_ABSTOL
abstol = `CHARGE_ABSTOL;
`else
abstol = 1e-14;
`endif
endnature
// Potential in volts
nature Voltage
units = "V";
access = V;
idt_nature = Flux;
`ifdef VOLTAGE_ABSTOL
abstol = `VOLTAGE_ABSTOL;
`else
abstol = 1e-6;
`endif
endnature
// Flux in Webers
nature Flux
units = "Wb";
access = Phi;
ddt_nature = Voltage;
`ifdef FLUX_ABSTOL
abstol = `FLUX_ABSTOL;
`else
abstol = 1e-9;
`endif
endnature
// Conservative discipline
discipline electrical
potential Voltage;
flow Current;
enddiscipline
// Signal flow disciplines
discipline voltage
potential Voltage;
enddiscipline
discipline current
potential Current;
enddiscipline
//from constants.h we need
`define C_EPSSIL 1.03594314e-10
`define C_EPSOX 34.5e-12
`define C_QE 1.602e-19
`define C_K 1.3807e-23
`define P_K 1.3806226e-23
`define P_EPS0 8.85418792394420013968e-12
`define P_CELSIUS0 273.15
`define POS_MIN 1.0E-6
`define SQRT2 1.4142135623730950488016887242097
`define ONE3RD 0.33333333333333333333333333333333
`define ONESQRT2 0.70710678118654752440084436210485
//if any other constant is needed it may be copied from the constants.h and be put above.
//------------------------------------------ end of includes
`define FWD 1
`define REV -1
// AB 040902
`define NOT_GIVEN -1.0e21
`define DEFAULT_TNOM 25
module ekv_va(d,g,s,b);
// %%DEVICE_CLASS=MOS(NMOS:TYPE=1,PMOS:TYPE=-1)%%
// Node definitions
inout d,g,s,b; // external nodes
electrical d,g,s,b; // external nodes
// Branch definitions
branch (d,s) ds;
branch (d,b) db;
branch (s,b) sb;
branch (g,b) gb;
// * Local variables
real tmp1, tmp2, tmp3; // temporary variables
real VGprime, GAMMAprime;// short and narrow channel effect
real VP, VPprime; // pinch-off voltage
real if_, ir, irprime; // normalized currents
real VDSS, VDSSprime;// saturation voltage
real deltaL, Leq; // channel length reduction
real beta; // transconductance factor
real n; // slope factor
real Ispec; // specific current
real Vt; // k*T/q
real gm, gms, gmbs, gds;
real isub, Isub;
real inv_Vt, Vt_01, Vt_2, Vt_4, Vt_Vt, Vt_Vt_2, Vt_Vt_16;
real eps_COX, eps_COX_W, eps_COX_L;
real Lc, Lc_LAMBDA, IBN_2, T0, T1, eta_qi;
real inv_UCRIT, Lc_UCRIT, Lc_IBB, IBA_IBB;
integer Mode;
real WETA_W, LETA_L;
real E0_Q_1, AWL;
real T, KP_Weff;
real Eg, refEg, deltaT, ratioT, Tnom;
real VTO_T, VTO_S, KP_T, UCRIT_T, IBB_T, PHI_T, GAMMA_S;
real sqrt_Lprime_Lmin;
real GAMMAstar, sqrt_GAMMAstar;
real big_sqrt_VP;
real big_sqrt_VP0, VP0;
real PHI_VD, PHI_VS;
real sqrt_PHI;
real sqrt_PHI_VP, sqrt_PHI_VD, sqrt_PHI_VS;
real sqrt_PHI_VD_Vt, sqrt_PHI_VS_Vt;
real Vds, deltaV_2, Vip;
real VDSS_sqrt, sqrt_VDSS_deltaV, sqrt_Vds_VDSS_deltaV;
real VDSSprime_sqrt, sqrt_VDSSprime_deltaV, sqrt_Vds_VDSSprime_deltaV;
real if_ir;
real sqrt_if, sqrt_ir, sqrt_irprime;
real dif_dv, dir_dv, dirprime_dv;
// Charge related variables
real sif, sir, sif2, sir2, sif3, sir3;
real sif_sir_2;
real qi, qb;
real QD, QS, QI, QB, QG;
real VP_PHI_eps, sqrt_PHI_VP_2, WLCox;
real n_Vt_COX, n_1, n_1_n;
// Variables used for derivatives computation
real dVP_dVD, dVP_dVG, dVP_dVS;
real dif_dVD, dif_dVS, dif_dVG;
real dir_dVD, dir_dVS, dir_dVG;
real dVDSS_dVD, dVDSS_dVG, dVDSS_dVS;
real ddeltaV_dVD, ddeltaV_dVG, ddeltaV_dVS;
real dVip_dVD, dVip_dVG, dVip_dVS;
real dVDSSprime_dVD, dVDSSprime_dVG, dVDSSprime_dVS;
real dirprime_dVD, dirprime_dVG, dirprime_dVS;
real dLeq_dVD, dLeq_dVG, dLeq_dVS;
real dbeta_dVD, dbeta_dVG, dbeta_dVS;
real VGstar, sqrt_VGstar;
real VG, VD, VS;
real Von, Vdsat, Id, Ibd;
real Gn;
real GAMMA_sqrt_PHI, Lmin, Lprime, T0_GAMMA_1, THETA_VP_1, Vc;
real Vdsprime, Vt_Vc, dGAMMAprime_dVD, dGAMMAprime_dVG, dGAMMAprime_dVS;
real dVPprime_dVD, dVPprime_dVG, dVPprime_dVS, ddeltaL_dVD, ddeltaL_dVG;
real ddeltaL_dVS, dn_dVD, dn_dVG, dn_dVS;
real log_Vc_Vt, sqrt_PHI_VP0, sqrt_VP_Vt;
real Lc_IBB_Vib, Vib, dIsub_factor, exp_ib;
real inv_Vib, sqrt_PHI_VP2_2;
real V0, deltaVFB, vL;
real dQI_dVD, dQI_dVS, dQI_dVG;
real dQB_dVD, dQB_dVS, dQB_dVG;
real Leff, Weff;
real RSeff, RDeff;
real yk, z0, zk;
real EPSOX, epssil;
real ddt_QD, ddt_QS;
//DIODES realted variables [AB: 040902]
real as_i, ad_i, ps_i, pd_i, v_di_b, v_si_b;
real temp_arg, tmp0;
real js_t, jsw_t, jswg_t;
real pb_t, pbsw_t, pbswg_t;
real cj_t, cjsw_t, cjswg_t;
real njts_t, njtssw_t, njtsswg_t;
real is_d, arg_d, is_s, arg_s;
real f_breakdown_d, f_breakdown_s, idb_tun, isb_tun;
real csb_d, cssw_d, csswg_d;
real csb_s, cssw_s, csswg_s;
real qjd, qjs;
// parameter definitions
parameter integer TYPE = 1 from [-1:1] exclude 0; // NMOS=1, PMOS=-1
parameter integer Noise = 1 from [0:1]; // Set to zero to prevent noise calculation
parameter real Trise = 0.0 from [-inf:inf]; // Difference sim. temp and device temp [C deg]
// parameter real Temp = -`NOT_GIVEN from [`P_CELSIUS0:inf]; // Device temp [C]
//AB: the parameter name Temp is not working for no obvious reason; changed to TEMP
parameter real TEMP = -`NOT_GIVEN from [`P_CELSIUS0:inf]; // Device temp [C]
parameter real TNOM = -`NOT_GIVEN; // Temperature [C]
parameter real L = 10E-6 from [0.0:inf]; // Channel length [m]
parameter real W = 10E-6 from [0.0:inf]; // Channel width [m]
parameter real M = 1.0 from [0.0:inf]; // Parallel multiple device number
parameter real NS = 1.0 from [0.0:inf]; // Series multiple device number
parameter real AS = 0.0 from [0.0:inf]; // Source area //AB: 040902
parameter real AD = 0.0 from [0.0:inf]; // Drain area //AB: 040902
parameter real PS = 0.0 from [0.0:inf]; // Source perimeter //AB: 040902
parameter real PD = 0.0 from [0.0:inf]; // Drain perimeter //AB: 040902
// *** Process related parameters
parameter real COX = 2.0E-3 from [0.0:inf]; // Gate oxide capacitance per unit area [F]
parameter real XJ = 300E-9 from [0.0:inf]; // Junction depth [m]
//*** Threshold voltage/substrate effect parameters (long-channel)
parameter real VTO = 0.5 from [-inf:inf]; // Long-channel threshold voltage [V]
parameter real TCV = 1.0e-3; // Threshold voltage temperature coefficient [V/K]
parameter real GAMMA = 0.7 from [0.0:inf]; // Body effect parameter
parameter real PHI = 0.5 from [0.2:inf]; // Bulk Fermi potential [V]
//*** Mobility parameters (long-channel) ***
parameter real KP = 150E-6 from [0.0:inf]; // Transconductance parameter [A/V/V]
parameter real BEX = -1.5; // Mobility temperature exponent
parameter real THETA = 0.0 from [0.0:inf]; // Mobility reduction coefficient [1/V]
parameter real E0 = 1.0E8; // Mobility reduction coefficient [V/m]
//*** Velocity sat./channel length mod. parameters (short-channel)
parameter real UCRIT = 2.0E6 from [0.0:inf]; // Longitudinal critical field [V/m]
parameter real UCEX = 0.8; // Longitudinal critical field temperature exponent
parameter real LAMBDA = 0.8 from [0.0:inf]; // Depletion length coefficient (channel length modulation)
//*** Process related parameters
parameter real DL = -0.01E-6; // Channel width correction [m]
parameter real DW = -0.01E-6; // Channel length correction [m]
//*** Threshold voltage/substrate effect parameter (narrow-channel)
parameter real WETA = 0.2 from [0.0:inf]; // Narrow-channel effect coefficient
//*** Threshold voltage/substrate effect parameters (short-channel)
parameter real LETA = 0.3 from [0.0:inf]; // Short-channel effect coefficient
parameter real Q0 = 230E-6 from [0.0:inf]; // Reverse short channel effect peak charge density
parameter real LK = 0.4E-6 from [0.0:inf]; // Reverse short channel effect characteristic length [m]
//*** Substrate current parameters
parameter real IBA = 5.0E8 from [0.0:inf]; // First impact ionization coefficient [1/m]
parameter real IBB = 4.0E8 from [0.0:inf]; // Second impact ionization coefficient [V/m]
parameter real IBBT = 9.0e-4; // Temperature coefficient for IBB [1/K]
parameter real IBN = 1.0 from [0.0:inf]; // Saturation voltage factor for impact ionization
//*** Series resistance parameters
parameter real RSH = 0.0 from [0.0:inf]; // Sheet resistance [Ohms]
parameter real HDIF = 0.5E-6 from [0.0:inf]; // Sheet resistance multipler
//*** for MC analysis fk 25/05/97
parameter real AVTO = 1E-6 from [0.0:inf]; // Area related threshold voltage mismatch parameter [Vm]
parameter real AKP = 1E-6 from [0.0:inf]; // Area related gain mismatch parameter [m]
parameter real AGAMMA = 1E-6 from [0.0:inf]; // Area related body effect mismatch parameter [sqr(V) m]
parameter real AF = 1.0 from (0:inf); // Flicker noise exponent
parameter real KF = 0.0 from [0:inf); // Flicker noise coefficient
//*** JUNCTION DRAIN-BULK AND SOURCE-BULK AREA, CURRENT, CAPACITANCE [AB:040902]
parameter real xd_n = 1.0 from [0.0:inf);
parameter real xd_js = 1.0E-09 from [0.0:inf);
parameter real xd_jsw = 1.0E-12 from [0.0:inf);
parameter real xd_jswg = 1.0E-12 from [0.0:inf);
parameter real xd_mj = 0.900 from [0.0:1.0];
parameter real xd_mjsw = 0.700 from [0.0:1.0];
parameter real xd_mjswg = 0.700 from [0.0:1.0];
parameter real xd_pb = 0.800 from (0.0:inf);
parameter real xd_pbsw = 0.600 from (0.0:inf);
parameter real xd_pbswg = 0.600 from (0.0:inf);
parameter real xd_cj = 1.0E-09 from [0.0:inf);
parameter real xd_cjsw = 1.0E-12 from [0.0:inf);
parameter real xd_cjswg = 1.0E-12 from [0.0:inf);
parameter real xd_gmin = 0.0 from [0.0:inf);
parameter real xd_xjbv = 0.0 from [0.0:inf);
parameter real xd_bv = 10.0 from [0.0:inf);
parameter real xd_njts = 1.0 from [0.0:inf);
parameter real xd_njtssw = 1.0 from [0.0:inf);
parameter real xd_njtsswg = 1.0 from [0.0:inf);
parameter real xd_vts = 0.0 from [0.0:inf);
parameter real xd_vtssw = 0.0 from [0.0:inf);
parameter real xd_vtsswg = 0.0 from [0.0:inf);
parameter real tp_xti = 3.0 from (-inf:inf);
parameter real tp_cj = 0.0 from (-inf:inf);
parameter real tp_cjsw = 0.0 from (-inf:inf);
parameter real tp_cjswg = 0.0 from (-inf:inf);
parameter real tp_pb = 0.0 from (-inf:inf);
parameter real tp_pbsw = 0.0 from (-inf:inf);
parameter real tp_pbswg = 0.0 from (-inf:inf);
parameter real tp_njts = 0.0 from [0.0:inf);
parameter real tp_njtssw = 0.0 from [0.0:inf);
parameter real tp_njtsswg = 0.0 from [0.0:inf);
analog begin
// Set constant
EPSOX = 3.9 * `P_EPS0;
epssil = 11.7 * `P_EPS0;
Ibd = 0.0;
// The following are necessary to prevent memory states being reserved:
THETA_VP_1 = 0.0;
VPprime = 0.0;
sqrt_VP_Vt = 0.0;
// Geometry, voltage and temperature independent model variables
eps_COX = epssil/COX;
Lc = sqrt(eps_COX*XJ);
Lc_LAMBDA = Lc * LAMBDA;
eps_COX_W = 3.0 * eps_COX * WETA;
eps_COX_L = eps_COX * LETA;
IBN_2 = IBN + IBN;
T0 = COX / (epssil*E0);
V0 = (Q0+Q0) / COX;
eta_qi = TYPE > 0 ? 0.5 : 0.3333333333333;
/* Model working variables, geometry and voltage independent,
* which need to be updated after temperature change
* EKV model internal variables depending on temperature.
*/
/* If Temp is explicitly specified, use that value
otherwise use Tckt+Trise */
if (TEMP == -`NOT_GIVEN) //AB: 040902 Temp -> TEMP
T = $temperature + Trise;
else
T = TEMP + `P_CELSIUS0; //AB: 040902 Temp -> TEMP
if (TNOM == -`NOT_GIVEN)
Tnom = `DEFAULT_TNOM + `P_CELSIUS0;
else
Tnom = TNOM + `P_CELSIUS0;
Vt = $vt(T);
Vt_01 = 0.1 * Vt;
inv_Vt = 1.0 / Vt;
Vt_2 = Vt + Vt;
Vt_4 = Vt_2 + Vt_2;
Vt_Vt = Vt * Vt;
Vt_Vt_2 = Vt_Vt + Vt_Vt;
Vt_Vt_16 = 16.0 * Vt_Vt;
Eg = 1.16 - 7.02e-4 * T * T / (T + 1108.0);
refEg = 1.16 - (7.02e-4*Tnom*Tnom) / (Tnom + 1108.0);
deltaT = T - Tnom;
ratioT = T / Tnom;
VTO_T = VTO - TCV * deltaT;
KP_T = KP * pow(ratioT, BEX);
UCRIT_T = UCRIT * pow(ratioT, UCEX);
IBB_T = IBB * (1.0 + IBBT * deltaT);
PHI_T = PHI * ratioT - 3.0 * Vt * ln(ratioT) - refEg * ratioT + Eg;
// !! mb 99/07/30 prevents PHI from becoming smaller than 0.2
tmp1 = 0.2;
tmp2 = PHI_T - tmp1;
PHI_T = 0.5*(tmp2 + sqrt(tmp2*tmp2 + Vt*Vt)) + tmp1;
sqrt_PHI = sqrt(PHI_T);
inv_UCRIT = 1.0/UCRIT_T;
Lc_UCRIT = Lc * UCRIT_T;
Lc_IBB = Lc * IBB_T;
IBA_IBB = IBA / IBB_T;
/* VTO, KP and GAMMA with variation for MC analysis if required.
* The default value for model parameters AVTO, AKP and AGAMMA
* is set to 1e-6 to allow meaningful sensitivity analysis. Only
* the deviation from this value has to be taken into account
*/
// wg: for userc.c and verilog implementations
Leff = L + DL;
// wg: for userc.c and verilog implementations
Weff = W + DW;
Vc = UCRIT_T*Leff; // NOTE: use L if necessary
log_Vc_Vt = Vt*(ln(0.5*Vc*inv_Vt)-0.6); // mb 98/02/05 (r1)
// de-normalization
AWL = 1.0/sqrt(Weff*Leff);
if (TYPE > 0)
VTO_S = ((AVTO != 1e-6) ? AWL*(AVTO - 1e-6) + VTO_T : VTO_T);
else
VTO_S = ((AVTO != 1e-6) ? AWL*(1e-6 - AVTO) - VTO_T: -VTO_T);
KP_Weff = Weff * ((AKP != 1e-6) ? KP_T*(1 + (AKP - 1e-6)*AWL) : KP_T);
GAMMA_S = ((AGAMMA !=1e-6) ? GAMMA + (AGAMMA - 1e-6)*AWL : GAMMA);
GAMMA_sqrt_PHI = GAMMA_S*sqrt_PHI;
/* ************************************
* STATIC MODEL EQUATIONS
* *************************************/
// VGprime:
if (V0 == 0.0)
deltaVFB = 0.0;
// else begin : VGprime //AB: 040902 VGPrime is also a variable and
else begin : VGprime_block //AB: 040902 VGPrime -> VGprime_block
real sqv;
// mb 99/03/26 corrected for multiple device number
vL = 0.28 * (Leff/(LK*NS) - 0.1);
sqv = 1.0 / (1.0 + 0.5*(vL + sqrt(vL*vL + 1.936e-3)));
deltaVFB = V0 * sqv * sqv;
end
VG = TYPE * V(g,b); // wg 22/04/08 corrected for device TYPE
VS = TYPE * V(s,b);
VD = TYPE * V(d,b);
if (VD - VS < 0) begin
Mode = `REV;
T1 = VS;
VS = VD;
VD = T1;
end
else
Mode = `FWD;
// VGB = VGS - VBS;
// VBD = VBS - VDS;
VGstar = VG - VTO_S - deltaVFB + PHI_T + GAMMA_sqrt_PHI;
sqrt_VGstar = sqrt(VGstar*VGstar + 2.0*Vt_Vt_16);
VGprime = 0.5*(VGstar + sqrt_VGstar);
// Pinch-off voltage VP, limited to VP >= -PHI
PHI_VS = PHI_T+VS;
sqrt_PHI_VS_Vt = sqrt(PHI_VS*PHI_VS+Vt_Vt_16);
sqrt_PHI_VS = sqrt(0.5*(PHI_VS+sqrt_PHI_VS_Vt));
PHI_VD = PHI_T+VD;
sqrt_PHI_VD_Vt = sqrt(PHI_VD*PHI_VD+Vt_Vt_16);
sqrt_PHI_VD = sqrt(0.5*(PHI_VD+sqrt_PHI_VD_Vt));
WETA_W = eps_COX_W * M / Weff;
LETA_L = eps_COX_L * NS / Leff;
// mb: symmetric version of GAMMAprime necessary with charges model
big_sqrt_VP0 = sqrt(VGprime + 0.25*GAMMA_S*GAMMA_S);
VP0 = VGprime - PHI_T - GAMMA_S*(big_sqrt_VP0 - 0.5*GAMMA_S);
sqrt_PHI_VP0 = sqrt(VP0+PHI_T+Vt_01);
GAMMAstar = GAMMA_S - LETA_L * (sqrt_PHI_VS+sqrt_PHI_VD) +
WETA_W * sqrt_PHI_VP0;
// keep GAMMAprime from becoming negative
sqrt_GAMMAstar = sqrt(GAMMAstar*GAMMAstar+Vt_01);
GAMMAprime = 0.5*(GAMMAstar+sqrt_GAMMAstar);
big_sqrt_VP = sqrt(VGprime+0.25*GAMMAprime*GAMMAprime);
VP = VGprime-PHI_T-GAMMAprime*(big_sqrt_VP-0.5*GAMMAprime);
// Forward normalized current:
tmp1 = (VP - VS) * inv_Vt;
if (tmp1 > -0.35) begin
z0 = 2.0/(1.3 + tmp1 - ln(tmp1 + 1.6));
zk = (2.0 + z0)/(1.0 + tmp1 + ln(z0));
yk = (1.0 + tmp1 + ln(zk))/(2.0 + zk);
end else begin
if (tmp1 > -15.0) begin
z0 = 1.55 + exp(-tmp1);
zk = (2.0 + z0)/(1.0 + tmp1 + ln(z0));
yk = (1.0 + tmp1 + ln(zk))/(2.0 + zk);
end else begin
if (tmp1 > -23.0) begin
yk = 1.0/(2.0 + exp(-tmp1));
end else begin
yk = exp(tmp1) + 1E-64;
end
end
end
if_ = yk*(1.0 + yk);
sqrt_if = sqrt(if_);
dif_dv = yk;
// Saturation voltage:
Vt_Vc = Vt / Vc;
VDSS_sqrt = sqrt(0.25+sqrt_if*Vt_Vc);
VDSS = Vc*(VDSS_sqrt-0.5);
Vds = 0.5*(VD-VS);
deltaV_2 = Vt_Vt_16*(LAMBDA*(sqrt_if-
VDSS*inv_Vt)+15.625e-3);
sqrt_VDSS_deltaV = sqrt(VDSS*VDSS+deltaV_2);
sqrt_Vds_VDSS_deltaV = sqrt((Vds-VDSS)*(Vds-VDSS)+deltaV_2);
Vip = sqrt_VDSS_deltaV-sqrt_Vds_VDSS_deltaV;
VDSSprime_sqrt = sqrt(0.25+(sqrt_if-0.75*ln(if_))*Vt_Vc);
VDSSprime = Vc*(VDSSprime_sqrt-0.5)+log_Vc_Vt;
// Reverse normalized current:
Vdsprime = Vds-VDSSprime; // mb 97/07/18 introduced Vdsprime
sqrt_VDSSprime_deltaV = sqrt(VDSSprime*VDSSprime+deltaV_2);
sqrt_Vds_VDSSprime_deltaV = sqrt(Vdsprime*Vdsprime+deltaV_2);
tmp1 = (VP-Vds-VS-sqrt_VDSSprime_deltaV+
sqrt_Vds_VDSSprime_deltaV)*inv_Vt;
// include -> Charge F(x) interpolate function
if (tmp1 > -0.35) begin
z0 = 2.0/(1.3 + tmp1 - ln(tmp1 + 1.6));
zk = (2.0 + z0)/(1.0 + tmp1 + ln(z0));
yk = (1.0 + tmp1 + ln(zk))/(2.0 + zk);
end else begin
if (tmp1 > -15.0) begin
z0 = 1.55 + exp(-tmp1);
zk = (2.0 + z0)/(1.0 + tmp1 + ln(z0));
yk = (1.0 + tmp1 + ln(zk))/(2.0 + zk);
end else begin
if (tmp1 > -23.0) begin
yk = 1.0/(2.0 + exp(-tmp1));
end else begin
yk = exp(tmp1) + 1E-64;
end
end
end
irprime = yk*(1.0 + yk);
sqrt_irprime = sqrt(irprime);
dirprime_dv = yk;
/* Channel length modulation & mobility reduction due
* to longitudinal field */
deltaL = Lc_LAMBDA*ln(1.0+(Vds-Vip)/Lc_UCRIT);
Lprime = Leff-deltaL+(Vds+Vip)*inv_UCRIT;
Lmin = 0.1*Leff;
sqrt_Lprime_Lmin = sqrt(Lprime*Lprime+Lmin*Lmin);
Leq = 0.5*(Lprime+sqrt_Lprime_Lmin);
// Transconductance factor:
// Mobility reduction due to vertical field
// Reverse normalized current:
// ratioV_ir
tmp1 = (VP - VD) * inv_Vt;
if (tmp1 > -0.35) begin
z0 = 2.0/(1.3 + tmp1 - ln(tmp1 + 1.6));
zk = (2.0 + z0)/(1.0 + tmp1 + ln(z0));
yk = (1.0 + tmp1 + ln(zk))/(2.0 + zk);
end else begin
if (tmp1 > -15.0) begin
z0 = 1.55 + exp(-tmp1);
zk = (2.0 + z0)/(1.0 + tmp1 + ln(z0));
yk = (1.0 + tmp1 + ln(zk))/(2.0 + zk);
end else begin
if (tmp1 > -23.0) begin
yk = 1.0/(2.0 + exp(-tmp1));
end else begin
yk = exp(tmp1) + 1E-64;
end
end
end
ir = yk*(1.0 + yk);
sqrt_ir = sqrt(ir);
dir_dv = yk;
sif2 = 0.25+if_;
sir2 = 0.25+ir;
sif = sqrt(sif2);
sir = sqrt(sir2);
sif_sir_2 = (sif+sir)*(sif+sir);
VP_PHI_eps = VP+PHI_T+1.0e-6;
sqrt_PHI_VP_2 = 2.0*sqrt(VP_PHI_eps);
n_1 = GAMMA_S/sqrt_PHI_VP_2;
n_1_n = GAMMA_S/(sqrt_PHI_VP_2 + GAMMA_S);
// Normalized inversion charge (qi=QI/WLCox)
qi = -(1.0+n_1)*Vt*((0.66666666+0.66666666)*
(sir2+sir*sif+sif2)/(sif+sir) - 1.0);
// Normalized depletion charge (qb=QB/WLCox), for depletion to inversion
qb = -0.5*GAMMA_S*sqrt_PHI_VP_2 - n_1_n*qi;
if (E0 == 0.0) begin
/* NOTE: this version of the simple mobility model from prior
* versions of the EKV model is reinstated.
* In case E0 is *not* specified, this
* simple mobility model is used according to THETA, if specified.
* VPprime:
* mb eliminated discontinuity of derivative of 1+THETA*VP
*/
sqrt_VP_Vt = sqrt(VP*VP + Vt_Vt_2);
VPprime = 0.5 * (VP + sqrt_VP_Vt);
THETA_VP_1 = 1.0+THETA*VPprime;
beta = KP_Weff / (Leq * THETA_VP_1); // mb 97/07/18
end
else begin
/* new model for mobility reduction, linked to the charges model
* mb 98/10/11 (r10) introduced fabs(Eeff) (jpm)
* E0_Q_1 = 1.0 + T0 * abs(qb+eta_qi*qi);
*/
if ((qb + eta_qi*qi) > 0.0)
E0_Q_1 = 1.0 + T0*(qb + eta_qi*qi);
else
E0_Q_1 = 1.0 - T0*(qb + eta_qi*qi);
T0_GAMMA_1 = 1.0 + T0*GAMMA_sqrt_PHI;
beta = KP_Weff * T0_GAMMA_1 / (Leq * E0_Q_1);
end
/* Slope factor: mb introduced new formula to avoid divergence
* of n for VP->-PHI */
sqrt_PHI_VP = sqrt(PHI_T+VP+Vt_4); // mb 95/12/19 introduced Vt_4
n = 1.0 + GAMMA_S/(2.0*sqrt_PHI_VP);
// Drain current:
if_ir = if_-irprime;
Ispec = Vt_Vt_2 * n * beta;
Id = Ispec * if_ir;
/* Return threshold voltage
* Von = Vth(Vs) = Vto + Gamma*(sqrt(Phi + Vsb)-sqrt(Phi)) */
Von = VTO_S + GAMMAprime*(sqrt_PHI_VS - sqrt_PHI);
// Return saturation voltage (estimate)
Vdsat = Vt * (2.0*sqrt_if + 4.0);
// Return equivalent conductance for thermal noise calculation
Gn = beta * abs(qi);
/* Pinch-off voltage derivatives:
* mb 97/09/14 symmetric version of GAMMAprime necessary with
* charges model
* mb 99/05/10 (r12) New VGprime formulation (REVISION III) allows
* VP derivatives to be expressed with a single equation
*/
tmp1 = GAMMAprime / (sqrt_GAMMAstar+sqrt_GAMMAstar);
tmp2 = VGprime/sqrt_VGstar; // dVGprime_dVG
dGAMMAprime_dVD = -LETA_L * tmp1 * sqrt_PHI_VD / sqrt_PHI_VD_Vt;
dGAMMAprime_dVS = -LETA_L * tmp1 * sqrt_PHI_VS / sqrt_PHI_VS_Vt;
dGAMMAprime_dVG = WETA_W * tmp1 * (big_sqrt_VP0-0.5*GAMMA_S) /
(big_sqrt_VP0*sqrt_PHI_VP0) * tmp2;
tmp3 = (VP+PHI_T) / big_sqrt_VP;
dVP_dVD = -tmp3 * dGAMMAprime_dVD;
dVP_dVS = -tmp3 * dGAMMAprime_dVS;
dVP_dVG = -tmp3 * dGAMMAprime_dVG + (1.0 -
GAMMAprime/(big_sqrt_VP+big_sqrt_VP)) * tmp2;
// Forward normalized current derivatives:
tmp1 = dif_dv * inv_Vt; // mb 95/08/28, 97/04/21
dif_dVD = tmp1 * dVP_dVD;
dif_dVS = tmp1 * (dVP_dVS-1.0);
dif_dVG = tmp1 * dVP_dVG;
// Saturation voltage derivatives:
tmp1 = Vt / (4.0*VDSS_sqrt*sqrt_if);
dVDSS_dVD = tmp1 * dif_dVD;
dVDSS_dVS = tmp1 * dif_dVS;
dVDSS_dVG = tmp1 * dif_dVG;
// deltaV derivatives:
tmp1 = (Vt_4+Vt_4) * LAMBDA;
tmp2 = Vt / (sqrt_if+sqrt_if);
ddeltaV_dVD = tmp1 * (dif_dVD*tmp2 - dVDSS_dVD);
ddeltaV_dVS = tmp1 * (dif_dVS*tmp2 - dVDSS_dVS);
ddeltaV_dVG = tmp1 * (dif_dVG*tmp2 - dVDSS_dVG);
// Vip derivatives:
tmp1 = 1.0 / sqrt_VDSS_deltaV;
tmp2 = 1.0 / sqrt_Vds_VDSS_deltaV;
tmp3 = Vds-VDSS;
dVip_dVD = (VDSS*dVDSS_dVD + ddeltaV_dVD) * tmp1 -
(tmp3 * (0.5-dVDSS_dVD) + ddeltaV_dVD) * tmp2;
dVip_dVS = (VDSS*dVDSS_dVS + ddeltaV_dVS) * tmp1 -
(tmp3 * (-0.5-dVDSS_dVS) + ddeltaV_dVS) * tmp2;
dVip_dVG = (VDSS*dVDSS_dVG + ddeltaV_dVG) * tmp1 -
(tmp3 * -dVDSS_dVG + ddeltaV_dVG) * tmp2;
// VDSSprime derivatives:
tmp1 = Vt * (sqrt_if-1.5)/(4.0*VDSSprime_sqrt*if_);
dVDSSprime_dVD = tmp1 * dif_dVD;
dVDSSprime_dVS = tmp1 * dif_dVS;
dVDSSprime_dVG = tmp1 * dif_dVG;
// Reverse normalized current derivatives:
tmp1 = dirprime_dv * inv_Vt; // mb 95/08/28, 97/04/21
tmp2 = 1.0 / sqrt_VDSSprime_deltaV; // mb 97/04/21
tmp3 = 1.0 / sqrt_Vds_VDSSprime_deltaV;
dirprime_dVD = tmp1 * (dVP_dVD-0.5 -
(VDSSprime*dVDSSprime_dVD+ddeltaV_dVD) * tmp2 +
(Vdsprime*(0.5-dVDSSprime_dVD)+ddeltaV_dVD) * tmp3);
dirprime_dVS = tmp1 * (dVP_dVS-0.5 -
(VDSSprime*dVDSSprime_dVS+ddeltaV_dVS) * tmp2 +
(Vdsprime*(-0.5-dVDSSprime_dVS)+ddeltaV_dVS) * tmp3);
dirprime_dVG = tmp1*(dVP_dVG -
(VDSSprime*dVDSSprime_dVG+ddeltaV_dVG) * tmp2 +
(Vdsprime*(-dVDSSprime_dVG)+ddeltaV_dVG) * tmp3);
// Channel length modulation & mobility reduction derivatives:
// deltaL derivatives:
tmp1 = Lc_LAMBDA / (Lc_UCRIT+Vds-Vip);
ddeltaL_dVD = tmp1 * (0.5-dVip_dVD);
ddeltaL_dVS = tmp1 * (-0.5-dVip_dVS);
ddeltaL_dVG = -tmp1 * dVip_dVG;
// Leq derivatives:
tmp1 = 1.0 / sqrt_Lprime_Lmin; // in fact dLeq_dVX/Leq
dLeq_dVD = tmp1 * (-ddeltaL_dVD + (0.5+dVip_dVD)*inv_UCRIT);
dLeq_dVS = tmp1 * (-ddeltaL_dVS + (-0.5+dVip_dVS)*inv_UCRIT);
dLeq_dVG = tmp1 * (-ddeltaL_dVG + dVip_dVG*inv_UCRIT);
// Transconductance factor derivatives:
tmp1 = dir_dv*inv_Vt;
dir_dVD = tmp1 * (dVP_dVD-1.0);
dir_dVS = tmp1 * dVP_dVS;
dir_dVG = tmp1 * dVP_dVG;
tmp1 = -(1.0+n_1)*Vt*0.66666666/sif_sir_2;
tmp2 = tmp1*(sif+2.0*sir);
tmp3 = tmp1*(sir+2.0*sif);
tmp1 = -n_1*qi/((2.0+n_1+n_1)*VP_PHI_eps);
dQI_dVD = tmp1 * dVP_dVD + tmp2 * dif_dVD + tmp3 * dir_dVD;
dQI_dVS = tmp1 * dVP_dVS + tmp2 * dif_dVS + tmp3 * dir_dVS;
dQI_dVG = tmp1 * dVP_dVG + tmp2 * dif_dVG + tmp3 * dir_dVG;
tmp1 = (1.0+n_1)-qi/(2.0*(1.0+n_1)*VP_PHI_eps);
dQB_dVD = -n_1_n * (tmp1 * dVP_dVD + dQI_dVD);
dQB_dVS = -n_1_n * (tmp1 * dVP_dVS + dQI_dVS);
dQB_dVG = -n_1_n * (tmp1 * dVP_dVG + dQI_dVG);
if (E0 == 0.0) begin
tmp1 = THETA * VPprime / (THETA_VP_1 * sqrt_VP_Vt);
// VPprime derivatives:
dVPprime_dVD = tmp1 * dVP_dVD;
dVPprime_dVS = tmp1 * dVP_dVS;
dVPprime_dVG = tmp1 * dVP_dVG;
dbeta_dVD = -dLeq_dVD - dVPprime_dVD; // in fact dbeta_dVX / beta
dbeta_dVS = -dLeq_dVS - dVPprime_dVS;
dbeta_dVG = -dLeq_dVG - dVPprime_dVG;
end
else begin
tmp1 = T0 / E0_Q_1;
dbeta_dVD = -dLeq_dVD + tmp1 * (dQB_dVD+eta_qi*dQI_dVD);
dbeta_dVS = -dLeq_dVS + tmp1 * (dQB_dVS+eta_qi*dQI_dVS);
dbeta_dVG = -dLeq_dVG + tmp1 * (dQB_dVG+eta_qi*dQI_dVG);
end
// Slope factor derivatives:
tmp1 = -GAMMA_S/(4.0*n*sqrt_PHI_VP*(PHI_T+VP+Vt_4));// mb 95/12/19
dn_dVD = tmp1 * dVP_dVD;
dn_dVS = tmp1 * dVP_dVS;
dn_dVG = tmp1 * dVP_dVG;
// Transconductances:
gds = Ispec*((dn_dVD + dbeta_dVD)*if_ir + dif_dVD - dirprime_dVD);
gms = -Ispec*((dn_dVS + dbeta_dVS)*if_ir + dif_dVS - dirprime_dVS);
gm = Ispec*((dn_dVG + dbeta_dVG)*if_ir + dif_dVG - dirprime_dVG);
gmbs = gms - gm - gds;
// S/D resistance corrections including W and DW
RSeff = (RSH*HDIF)/(Weff-DW);
RDeff = (RSH*HDIF)/(Weff-DW);
tmp1 = 1.0/(1.0 + gms*RSeff + gds*RDeff);
Id = Id*tmp1;
/****** Impact ionization current ******
* mb 95/12/19 introduced impact ionization
* This current component is flowing from the intrinsic drain terminal
* to the bulk (for NMOS) in parallel with the junction current.
* The simulator should also take into account the corresponding
* conductances.
*/
// Substrate current:
Vib = VD-VS-IBN_2*VDSS;
if ((Vib > 0.0) && (IBA_IBB > 0.0)) begin
inv_Vib = 1.0/Vib;
Lc_IBB_Vib = -Lc_IBB*inv_Vib;
if (Lc_IBB_Vib < -35.0) // math precision check
Lc_IBB_Vib = -35.0;
exp_ib = exp(Lc_IBB_Vib);
isub = IBA_IBB*Vib*exp_ib;
Isub = isub*Id;
dIsub_factor = Isub*inv_Vib*(1.0-Lc_IBB_Vib);
end
else begin
Lc_IBB_Vib = 0.0;
Isub = 0.0;
end
// END: substrate current computation
Ibd = Ibd - Isub;
// --- Charge calculations ---
WLCox = Weff * Leff * COX;
sif3 = sif*sif2;
sir3 = sir*sir2;
tmp1 = sqrt(PHI_T + 0.5 * VP);
sqrt_PHI_VP2_2 = tmp1+tmp1;
n_Vt_COX = (1.0 + GAMMAprime/sqrt_PHI_VP2_2) * Vt*WLCox;
QD = -n_Vt_COX*(0.266666666*(3.0*sir3+6.0*sir2*sif+4.0*
sir*sif2+2.0*sif3)/sif_sir_2 - 0.5);
QS = -n_Vt_COX*(0.266666666*(3.0*sif3+6.0*sif2*sir+4.0*
sif*sir2+2.0*sir3)/sif_sir_2 - 0.5);
QI = QS + QD;
QB = WLCox * (-0.5*GAMMAprime*sqrt_PHI_VP_2 + VGprime - VGstar) -
QI*GAMMAprime/(GAMMAprime+sqrt_PHI_VP2_2);
QG = -QI -QB;
I(ds) <+ TYPE * Mode * Id; // wg 22/04/08 corrected for device TYPE
ddt_QD = ddt(QD);
ddt_QS = ddt(QS);
if (Mode == `FWD) begin
I(db) <+ TYPE * ddt_QD; // wg 22/04/08 corrected for device TYPE
I(sb) <+ TYPE * ddt_QS;
I(db) <+ TYPE * Isub;
end
else begin
I(sb) <+ TYPE * ddt_QD; // wg 22/04/08 corrected for device TYPE
I(db) <+ TYPE * ddt_QS;
I(sb) <+ TYPE * Isub;
end
I(gb) <+ TYPE * ddt(QG); // wg 22/04/08 corrected for device TYPE
// if (Noise) begin : Noise //AB: 040902 Noise is also a variable and
if (Noise) begin : Noise_block //AB: 040902 Noise -> Noise_block
real S_flicker, S_thermal;
S_thermal = 4 * `P_K * T * Gn;
S_flicker = KF * gm * gm / (Weff * NS * Leff * COX);
I(ds) <+ white_noise(S_thermal, "thermal") +
flicker_noise(S_flicker, AF, "flicker");
end
///////////////////////////////////
//EXTRINSIC PART: JUNCTION DIODES//
///////////////////////////////////
//diode area and perimeter computation
if ((AS == 0.0) && (HDIF>0.0)) as_i = 2.0*HDIF*Weff;
else as_i = AS;
if ((PS == 0.0) && (HDIF>0.0)) ps_i = 4.0*HDIF+1.0*Weff;
else ps_i = PS;
if ((AD == 0.0) && (HDIF>0.0)) ad_i = 2.0*HDIF*Weff;
else ad_i = AD;
if ((PD == 0.0) && (HDIF>0.0)) pd_i = 4.0*HDIF+1.0*Weff;
else pd_i = PD;
//temperature update for diodes
temp_arg = exp((refEg/$vt(Tnom) - Eg/Vt + tp_xti*ln(ratioT))/xd_n);
js_t = xd_js*temp_arg;
jsw_t = xd_jsw*temp_arg;
jswg_t = xd_jswg*temp_arg;
pb_t = xd_pb - tp_pb*deltaT;
pbsw_t = xd_pbsw - tp_pbsw*deltaT;
pbswg_t = xd_pbswg - tp_pbswg*deltaT;
cj_t = xd_cj*(1.0+tp_cj*deltaT);
cjsw_t = xd_cjsw*(1.0+tp_cjsw*deltaT);
cjswg_t = xd_cjswg*(1.0+tp_cjswg*deltaT);
njts_t = xd_njts*(1.0+(ratioT-1.0)*tp_njts);
njtssw_t = xd_njtssw*(1.0+(ratioT-1.0)*tp_njtssw);
njtsswg_t = xd_njtsswg*(1.0+(ratioT-1.0)*tp_njtsswg);
//DC
v_di_b = TYPE*V(d,b);
v_si_b = TYPE*V(s,b);
//DRAIN - BULK
is_d = js_t*ad_i+jsw_t*pd_i+jswg_t*Weff;
arg_d = -v_di_b*ratioT/(Vt*xd_n);
if (arg_d < -40.0) arg_d = -40.0;
tmp0 = (-v_di_b+xd_bv)*ratioT/(Vt*xd_n);
if (tmp0>70) f_breakdown_d = 1.0;
else f_breakdown_d = 1.0 + xd_xjbv*exp(-tmp0);
// TRAP-ASSISTED TUNNELING CURRENT
idb_tun = -Weff*jswg_t*(exp(v_di_b*ratioT/(Vt*njtsswg_t) * xd_vtsswg/max(xd_vtsswg+v_di_b,1.0e-3))-1.0);
idb_tun = idb_tun - pd_i*jsw_t*(exp(v_di_b*ratioT/(Vt*njtssw_t) * xd_vtssw/max(xd_vtssw+v_di_b,1.0e-3))-1.0);
idb_tun = idb_tun - ad_i*js_t*(exp(v_di_b*ratioT/(Vt*njts_t) * xd_vts/max(xd_vts+v_di_b,1.0e-3))-1.0);
I(d,b) <+ (is_d * (1.0 - exp(arg_d))*f_breakdown_d+v_di_b*xd_gmin + idb_tun)*TYPE*M;
//SOURCE - BULK
is_s = js_t*as_i+jsw_t*ps_i+jswg_t*Weff;
arg_s = -v_si_b*ratioT/(Vt*xd_n);
if (arg_s < -40.0) arg_s = -40.0;
tmp0 = (-v_si_b+xd_bv)*ratioT/(Vt*xd_n);
if (tmp0>70) f_breakdown_s = 1.0;
else f_breakdown_s = 1.0 + xd_xjbv*exp(-tmp0);
// TRAP-ASSISTED TUNNELING CURRENT
isb_tun = -Weff*jswg_t*(exp(v_si_b*ratioT/(Vt*njtsswg_t) * xd_vtsswg/max(xd_vtsswg+v_si_b,1.0e-3))-1.0);
isb_tun = isb_tun - ps_i*jsw_t*(exp(v_si_b*ratioT/(Vt*njtssw_t) * xd_vtssw/max(xd_vtssw+v_si_b,1.0e-3))-1.0);
isb_tun = isb_tun - as_i*js_t*(exp(v_si_b*ratioT/(Vt*njts_t) * xd_vts/max(xd_vts+v_si_b,1.0e-3))-1.0);
I(s,b) <+ (is_s * (1.0 - exp(arg_s))*f_breakdown_s+v_si_b*xd_gmin + isb_tun)*TYPE*M;
//AC
//DRAIN - BULK
if (v_di_b>0.0)
begin
csb_d = cj_t * ad_i * exp(-xd_mj*ln(1.0+v_di_b/pb_t));
cssw_d = cjsw_t * pd_i * exp(-xd_mjsw*ln(1.0+v_di_b/pbsw_t));
csswg_d = cjswg_t * Weff * exp(-xd_mjswg*ln(1.0+v_di_b/pbswg_t));
end
else
begin
csb_d = cj_t * ad_i * (1.0 - xd_mj*v_di_b/pb_t);
cssw_d = cjsw_t * pd_i * (1.0 - xd_mjsw*v_di_b/pbsw_t);
csswg_d = cjswg_t * Weff * (1.0 - xd_mjswg*v_di_b/pbswg_t);
end
qjd = (csb_d+cssw_d+csswg_d) * v_di_b;
I(d,b) <+ ddt(qjd)*TYPE*M;
//SOURCE - BULK
if (v_si_b>0.0)
begin
csb_s = cj_t * as_i * exp(-xd_mj*ln(1.0+v_si_b/pb_t));
cssw_s = cjsw_t * ps_i * exp(-xd_mjsw*ln(1.0+v_si_b/pbsw_t));
csswg_s = cjswg_t * Weff * exp(-xd_mjswg*ln(1.0+v_si_b/pbswg_t));
end
else
begin
csb_s = cj_t * as_i * (1.0 - xd_mj*v_si_b/pb_t);
cssw_s = cjsw_t * ps_i * (1.0 - xd_mjsw*v_si_b/pbsw_t);
csswg_s = cjswg_t * Weff * (1.0 - xd_mjswg*v_si_b/pbswg_t);
end
qjs = (csb_s+cssw_s+csswg_s) * v_si_b;
I(s,b) <+ ddt(qjs)*TYPE*M;
//END OF DIODES
end
endmodule