-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMAIN_make_GMAT_script.m
274 lines (216 loc) · 10.4 KB
/
MAIN_make_GMAT_script.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
%% MAKE GMAT SCRIPT TO GET ALL DESIRED ORBITS
%
% Written by: Tyler Reid
% Lab: Stanford GPS Lab
% Project Title: L5 SBAS MOPS
% Start Date: April 28, 2017
% Last Modified: May 24, 2017
%
% -------------------------------------------------------------------------
% DESCRIPTION
%
% This produces a script that configures and runs the NASA General Mission
% Analysis Tool (GMAT) for a variety of orbits and time steps.
% For more info on GMAT, please see: https://gmat.gsfc.nasa.gov/
%
%% SET UP WORKSPACE
clear
clc
close all
%% SET UP ORBITS / PHYSICAL PARAMETERS
% Bring physical constants into the workspace.
physical_constants_GPS;
% Altitudes.
altitudes = 42164-R_e/1000; % [km]
% Create Inclinations and eccentricities to test.
ecc = [0, 1e-16, 1e-12, 1e-8, 1e-4, 1e-3, ...
1e-2, 1e-1, 0.2, 0.3, 0.4, 0.5, 0.6]';
inc = [0, 1e-16, 1e-12, 1e-8, 1e-4, 1e-3, 1e-2, 1e-1, 0.5, 1, 2, 5, 10]';
% Define RAAN.
RAAN = 270;
AOP = 0;
TA = 0;
% The number of orbits being examined.
num_cases = length(ecc) * length(inc) * ...
length(RAAN) * length(AOP) * length(TA);
disp(['Number of cases: ',num2str(num_cases)])
% Set MEOs/IGSOs to be have typical GPS satellite physical parameters.
area_MEOplus = 21; % [m^2]
mass_MEOplus = 1665; % [kg]
inc_MEOplus = 55; % [deg]
% Start and end date of the simulation.
start_date = '01 Jan 2017 00:00:00.000';
end_date = '01 Jan 2018 00:00:00.000';
% Propagation time.
prop_time = 86400; % [sec]
% Time between successive propagations.
next_prop = 366 * 24 * 60 * 60; % [sec]
% Start times for propagations.
times = 0:next_prop:(datenum(end_date) - datenum(start_date))*24*3600;
disp(['Number of orbit props: ',num2str(length(times))])
disp(['Number of total cases: ',num2str(num_cases * length(times))])
%% MAKE SPACECRAFT NAMES
max_digits = length(num2str(length(times) * num_cases)); % The maximum number of digits.
preamble = '';
for i = 1:max_digits-1
preamble = [preamble,'0'];
end
for alt = 1:length(altitudes)
for orb_param = 1:num_cases
idx = length(num2str(orb_param))-1;
sv_name{alt,orb_param} = ['MOPSSat_alt_',...
num2str(floor(altitudes(alt))),'_km_RAAN_',num2str(RAAN),'_',preamble(1:end-idx),num2str(orb_param)];
end
end
%% MAKE THE ORBIT EVERY X MINUTES FOR A YEAR (MAKE 24 HOUR TRACKS)
% Open text file.
fileID = fopen(horzcat('RUN_ALL_GMAT_ORBITS_RAAN_',num2str(RAAN),'.script'),'w');
% initialize case number.
case_number = 1;
% Create all spacecraft orbits.
for alt = 1:length(altitudes)
for ecc_idx = 1:length(ecc)
for inc_idx = 1:length(inc)
for RAAN_idx = 1:length(RAAN)
% Create spacecraft.
fprintf(fileID,['Create Spacecraft ',sv_name{alt,case_number},';\n']);
% Update date / time.
new_date = addtodate(datenum(start_date), times(1), 'second');
fprintf(fileID,['GMAT ',sv_name{alt,case_number},'.DateFormat = UTCGregorian;\n']);
fprintf(fileID,['GMAT ',sv_name{alt,case_number},'.Epoch = ''',datestr(new_date,'dd mmm yyyy HH:MM:SS.FFF'),''';\n']);
fprintf(fileID,['GMAT ',sv_name{alt,case_number},'.CoordinateSystem = EarthMJ2000Eq;\n']);
% Update orbital elements.
semi_major_axis = R_e/1000 + altitudes(alt); % [km]
%n = sqrt(mu/semi_major_axis^3); % [rad/s] - Mean orbital rate.
%true_anomaly = TA + n*times(t)*180/pi; % [deg]
%true_anomaly = mod(true_anomaly, 360); % put between 0 and 360.
% Choose true anomaly from uniform random
% true_anomaly = unifrnd(0, 360); % [deg]
true_anomaly = TA;
fprintf(fileID,['GMAT ',sv_name{alt,case_number},'.SMA = ',num2str(semi_major_axis),';\n']); % [km]
fprintf(fileID,['GMAT ',sv_name{alt,case_number},'.ECC = ',num2str(ecc(ecc_idx)),';\n']); % [-]
fprintf(fileID,['GMAT ',sv_name{alt,case_number},'.RAAN = ',num2str(RAAN(RAAN_idx)),';\n']); % [deg]
fprintf(fileID,['GMAT ',sv_name{alt,case_number},'.AOP = ',num2str(AOP),';\n']); % [deg]
fprintf(fileID,['GMAT ',sv_name{alt,case_number},'.TA = ',num2str(true_anomaly),';\n']); % [deg]
% Inclination
if altitudes(alt)>20000 % MEO and above.
fprintf(fileID,['GMAT ',sv_name{alt,case_number},'.INC = ',num2str(inc(inc_idx)),';\n']); % [deg]
else % LEO
fprintf(fileID,['GMAT ',sv_name{alt,case_number},'.INC = ',num2str(inc_LEO),';\n']); % [deg]
end % end if.
% Physical parameters.
if altitudes(alt)>20000 % MEO and above
fprintf(fileID,['GMAT ',sv_name{alt,case_number},'.DryMass = ',num2str(mass_MEOplus),';\n']); % [kg]
fprintf(fileID,['GMAT ',sv_name{alt,case_number},'.SRPArea = ',num2str(area_MEOplus),';\n']); % [m^2]
fprintf(fileID,['GMAT ',sv_name{alt,case_number},'.DragArea = ',num2str(area_MEOplus),';\n']); % [m^2]
else % LEO
fprintf(fileID,['GMAT ',sv_name{alt,case_number},'.DryMass = ',num2str(mass_LEO),';\n']); % [kg]
fprintf(fileID,['GMAT ',sv_name{alt,case_number},'.SRPArea = ',num2str(area_LEO),';\n']); % [m^2]
fprintf(fileID,['GMAT ',sv_name{alt,case_number},'.DragArea = ',num2str(area_LEO),';\n']); % [m^2]
end % end if.
fprintf(fileID,['GMAT ',sv_name{alt,case_number},'.Cr = 1.8;\n']);
fprintf(fileID,['GMAT ',sv_name{alt,case_number},'.Cd = 2.2;\n']);
% Save the eccentricity, inclination, as a function of case
% number.
ecc_orb_scenario(case_number) = ecc(ecc_idx);
inc_orb_scenario(case_number) = inc(inc_idx);
% March forward.
case_number = case_number + 1;
% New line.
fprintf(fileID,'\n');
end % end RAAN.
end % end inc.
end % end ecc.
end % end alt.
%% FORCE MODEL
% Create force model.
fprintf(fileID,'Create ForceModel fm;\n');
% Earth gravity + tides.
fprintf(fileID,'GMAT fm.CentralBody = Earth;\n');
fprintf(fileID,'GMAT fm.PrimaryBodies = {Earth};\n');
fprintf(fileID,'GMAT fm.GravityField.Earth.Degree = 70;\n');
fprintf(fileID,'GMAT fm.GravityField.Earth.Order = 70;\n');
fprintf(fileID,'GMAT fm.GravityField.Earth.PotentialFile = ''EGM96.cof'';\n'); % GPS currently uses the EGM96 model which has degree / order 70
fprintf(fileID,'GMAT fm.GravityField.Earth.EarthTideModel = ''SolidAndPole'';\n');
fprintf(fileID,'\n');
% Third body gravity.
% GPS currently only models the Moon and Sun
fprintf(fileID,'GMAT fm.PointMasses = {Luna, Sun};\n');
fprintf(fileID,'\n');
% Drag. - This is negligable for GPS but will keep it on for LEO.
fprintf(fileID,'GMAT fm.Drag.AtmosphereModel = MSISE90;\n');
fprintf(fileID,'GMAT fm.Drag.HistoricWeatherSource = ''ConstantFluxAndGeoMag'';\n'); % Default
fprintf(fileID,'GMAT fm.Drag.PredictedWeatherSource = ''ConstantFluxAndGeoMag'';\n'); % Default
fprintf(fileID,'GMAT fm.Drag.F107 = 150;\n'); % Default
fprintf(fileID,'GMAT fm.Drag.F107A = 150;\n'); % Default
fprintf(fileID,'GMAT fm.Drag.MagneticIndex = 3;\n'); % Default
fprintf(fileID,'\n');
% Solar Radiation Pressure.
% GPS has its own specific model we won't get into the details of here.
fprintf(fileID,'GMAT fm.SRP = On;\n');
fprintf(fileID,'GMAT fm.SRP.Flux = 1367;\n'); % Default
fprintf(fileID,'GMAT fm.SRP.SRPModel = Spherical;\n'); % Default
fprintf(fileID,'GMAT fm.SRP.Nominal_Sun = 149597870.691;\n'); % Default
fprintf(fileID,'\n');
% Relativity.
fprintf(fileID,'GMAT fm.RelativisticCorrection = On;\n'); % GPS currently includes this.
fprintf(fileID,'\n');
% Error control.
fprintf(fileID,'GMAT fm.ErrorControl = RSSStep;\n');
fprintf(fileID,'\n');
%% SET UP PROPAGATOR
% Create propagator.
fprintf(fileID,'Create Propagator prop;\n');
fprintf(fileID,'GMAT prop.FM = fm;\n');
fprintf(fileID,'GMAT prop.Type = RungeKutta89;\n'); % Good performance in LEO according to documentation
fprintf(fileID,'GMAT prop.InitialStepSize = 30;\n');
fprintf(fileID,'GMAT prop.Accuracy = 9.999999999999999e-12;\n');
fprintf(fileID,'GMAT prop.MinStep = 0.001;\n');
fprintf(fileID,'GMAT prop.MaxStep = 30;\n');
fprintf(fileID,'GMAT prop.MaxStepAttempts = 50;\n');
fprintf(fileID,'GMAT prop.StopIfAccuracyIsViolated = true;\n');
fprintf(fileID,'\n');
%% SET UP EPHEMERIS FILES
% Create / configure ephemeris files.
for alt = 1:length(altitudes)
for orb_param = 1:num_cases
% Create ephemeris file.
fprintf(fileID,...
['Create EphemerisFile EphmerisFile_',sv_name{alt,orb_param},';\n']);
% Set spacecraft.
fprintf(fileID,...
['EphmerisFile_',sv_name{alt,orb_param},'.Spacecraft = ',sv_name{alt,orb_param},';\n']);
% Set file name output.
fprintf(fileID,...
['EphmerisFile_',sv_name{alt,orb_param},'.Filename = ''','EphemerisFile_',sv_name{alt,orb_param},'.eph'';\n']);
% Set coordinate system, we'll used ECEF.
% fprintf(fileID,...
% ['EphmerisFile_',sv_name{alt,orb_param},'.CoordinateSystem = EarthFixed;\n']);
% This is the code for inertial coordinates.
fprintf(fileID,...
['EphmerisFile_',sv_name{alt,orb_param},'.CoordinateSystem = EarthMJ2000Eq;\n']);
% Set the step size.
fprintf(fileID,...
['EphmerisFile_',sv_name{alt,orb_param},'.StepSize = 10;\n']);
% New line.
fprintf(fileID,'\n');
end % end orb_param.
end % end alt.
%% RUN THE MISSION
fprintf(fileID,'BeginMissionSequence;\n');
% Run all orbits.
for alt = 1:length(altitudes)
for orb_param = 1:num_cases
% Propagate for 24 hours.
fprintf(fileID,...
['Propagate prop(',sv_name{alt,orb_param},') {',sv_name{alt,orb_param},'.ElapsedSecs = 86400.0};\n']);
end % end t.
end % end alt.
% Close file.
fclose(fileID);
%% SAVE NUMBERING AND PARAMETERS
ecc_cases = ecc;
inc_cases = inc;
save('orbit_numbering_GMAT.mat', 'sv_name' , 'ecc_cases', 'inc_cases',...
'ecc_orb_scenario', 'inc_orb_scenario', ...
'AOP', 'TA', 'altitudes', 'num_cases')