This page explains how to fine-tune a pre-sparsified YOLOv5 model with SparseML's CLI.
Sparse Transfer is quite similiar to the typical YOLOv5 training, where we fine-tune a checkpoint pretrained on COCO onto a smaller downstream dataset. However, with Sparse Transfer Learning, we simply start the fine-tuning process from a pre-sparsified YOLOv5 and maintain sparsity while the training process occurs.
SparseZoo contains pre-sparsified checkpoints of each YOLOv5 model. These models can be used as the starting checkpoint for the sparse transfer learning workflow.
Check out the full list of pre-sparsified YOLOv5 models
Install via pip
:
pip install "sparseml[yolov5]"
In this page, you will:
- Sparse Transfer Learn YOLOv5s onto VOC
- Sparse Transfer Learn Other YOLOv5 Models
- Sparse Transfer Learn with a Custom Dataset
The examples below will use SparseML's CLI, which is built on top of YOLOv5's train.py
script.
This enables you to kick-off sparse training workflows with all of the friendly utilities from the friendly Ultralytics repo like dataset loading and preprocessing, checkpoint saving, metric reporting, and logging handled for you. Appending the --help
argument will provide a full list of options for training in SparseML:
sparseml.yolov5.train --help
output:
usage: sparseml.yolov5.train [-h] [--weights WEIGHTS] [--cfg CFG] [--data DATA] [--hyp HYP] [--epochs EPOCHS] [--batch-size BATCH_SIZE] [--imgsz IMGSZ] [--rect]
[--resume [RESUME]] [--nosave] [--noval] [--noautoanchor] [--evolve [EVOLVE]] [--bucket BUCKET] [--cache [CACHE]] [--image-weights]
[--device DEVICE] [--multi-scale] [--single-cls] [--optimizer {SGD,Adam,AdamW}] [--sync-bn] [--workers WORKERS] [--project PROJECT]
[--name NAME] [--exist-ok] [--quad] [--cos-lr] [--label-smoothing LABEL_SMOOTHING] [--patience PATIENCE] [--freeze FREEZE [FREEZE ...]]
[--save-period SAVE_PERIOD] [--local_rank LOCAL_RANK] [--entity ENTITY] [--upload_dataset [UPLOAD_DATASET]]
[--bbox_interval BBOX_INTERVAL] [--artifact_alias ARTIFACT_ALIAS] [--recipe RECIPE] [--disable-ema] [--max-train-steps MAX_TRAIN_STEPS]
[--max-eval-steps MAX_EVAL_STEPS] [--one-shot] [--num-export-samples NUM_EXPORT_SAMPLES]
optional arguments:
-h, --help show this help message and exit
--weights WEIGHTS initial weights path
--cfg CFG model.yaml path
--data DATA dataset.yaml path
--hyp HYP hyperparameters path
--epochs EPOCHS
--batch-size BATCH_SIZE
total batch size for all GPUs, -1 for autobatch
...
SparseML inherits most arguments from the Ultralytics repository. For more details, check out the YOLOv5 documentation.
Let's try a step-by-step example of Sparse Transfer Learning YOLOv5s onto the VOC dataset.
To run sparse transfer learning, we first need to create/select a sparsification recipe. For sparse transfer, we need a recipe that instructs SparseML to maintain sparsity during training and to quantize the model over the final epochs.
For the VOC dataset, there is a transfer learning recipe available in SparseZoo, identified by the following stub:
zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/pruned75_quant-none?recipe_type=transfer_learn
Here's what the transfer learning recipe looks like:
version: 1.1.0
# General variables
num_epochs: 55
quantization_epochs: 5
quantization_lr: 1.e-5
final_lr: 1.e-9
training_modifiers:
- !EpochRangeModifier
start_epoch: 0
end_epoch: eval(num_epochs)
- !LearningRateFunctionModifier
start_epoch: eval(num_epochs - quantization_epochs)
end_epoch: eval(num_epochs)
lr_func: cosine
init_lr: eval(quantization_lr)
final_lr: eval(final_lr)
pruning_modifiers:
- !ConstantPruningModifier
start_epoch: 0.0
params: __ALL_PRUNABLE__
quantization_modifiers:
- !QuantizationModifier
start_epoch: eval(num_epochs - quantization_epochs)
submodules:
- model
custom_quantizable_module_types: ['SiLU']
exclude_module_types: ['SiLU']
quantize_conv_activations: False
disable_quantization_observer_epoch: eval(num_epochs - quantization_epochs + 2)
freeze_bn_stats_epoch: eval(num_epochs - quantization_epochs + 1)
The "Modifiers" encode how SparseML should modify the training process for Sparse Transfer Learning.
ConstantPruningModifier
tells SparseML to pin weights at 0 over all epochs, maintaining the sparsity structure of the networkQuantizationModifier
tells SparseML to quantize the weights with quantization aware training over the last 5 epochs
SparseML parses the instructions declared in the recipe and modifies the YOLOv5 training loop accordingly before running the fine-tuning.
Run the following:
sparseml.yolov5.train \
--weights zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/pruned75_quant-none?recipe_type=transfer_learn \
--recipe zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/pruned75_quant-none?recipe_type=transfer_learn \
--data VOC.yaml \
--patience 0 \
--cfg yolov5s.yaml \
--hyp hyps/hyp.finetune.yaml
Lets discuss the key arguments:
-
--weights
specifies the starting checkpoint for the training process. Here, we passed a SparseZoo stub, which identifies the 75% pruned-quantized YOLOv5s model in the SparseZoo. The script downloads the PyTorch model to begin training. In addition to SparseZoo stubs, you can also pass a local path to a PyTorch checkpoint. -
--recipe
specifies the transfer learning recipe. In this case, we passed a SparseZoo stub, which instructs SparseML to download the premade YOLOv5s transfer learning recipe shown above. In addition to SparseZoo stubs, you can also pass a local path to a YAML recipe. -
--data
specifies the dataset configuration. Here, we specify the VOC dataset, which is automatically downloaded. See below for an example using a custom dataset. -
--hyps
specifies a path to the hyperparameters for the training. Here, we use a built in configuration for fine-tuning. Note that any hyperparameters specified in the--recipe
(e.g. epochs or learning rate) will override anything passed to the--hyps
argument. For instance, in this case, the recipe specifies the learning rate schedule for QAT. The specification in the recipe overrides thelr
in the hyperparameter file.
As a result, sparsity is maintained while the training occurs and we quantize the model over the final few epochs. In the end, we have a 75% pruned and quantized YOLOv5s trained on VOC!
Once trained, you can export the model to ONNX for inference with DeepSparse.
Run the following:
sparseml.yolov5.export_onnx \
--weights yolov5_runs/train/exp/weights/last.pt \
--dynamic
The resulting ONNX file is saved in your local directory.
Here are some sample transfer learning commands for other versions of YOLOv5.
- YOLOv5n Pruned-Quantized:
sparseml.yolov5.train \
--cfg yolov5n.yaml \
--weights zoo:cv/detection/yolov5-n/pytorch/ultralytics/coco/pruned40_quant-none?recipe_type=transfer_learn \
--recipe zoo:cv/detection/yolov5-n/pytorch/ultralytics/coco/pruned40_quant-none?recipe_type=transfer_learn \
--data VOC.yaml \
--patience 0 \
--hyp hyps/hyp.finetune.yaml
- YOLOv5s Pruned-Quantized:
sparseml.yolov5.train \
--cfg yolov5s.yaml \
--weights zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/pruned75_quant-none?recipe_type=transfer_learn \
--recipe zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/pruned75_quant-none?recipe_type=transfer_learn \
--data VOC.yaml \
--patience 0 \
--hyp hyps/hyp.finetune.yaml
- YOLOv5m Pruned-Quantized:
sparseml.yolov5.train \
--cfg yolov5m.yaml \
--weights zoo:cv/detection/yolov5-m/pytorch/ultralytics/coco/pruned70_quant-none?recipe_type=transfer_learn \
--recipe zoo:cv/detection/yolov5-m/pytorch/ultralytics/coco/pruned70_quant-none?recipe_type=transfer_learn \
--data VOC.yaml \
--patience 0 \
--hyp hyps/hyp.finetune.yaml
- YOLOv5l Pruned-Quantized:
sparseml.yolov5.train \
--cfg yolov5l.yaml \
--weights zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned90_quant-none?recipe_type=transfer_learn \
--recipe zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned90_quant-none?recipe_type=transfer_learn \
--data VOC.yaml \
--patience 0 \
--hyp hyps/hyp.finetune.yaml
- YOLOv5x Pruned-Quantized
sparseml.yolov5.train \
--cfg yolov5x.yaml \
--weights zoo:cv/detection/yolov5-x/pytorch/ultralytics/coco/pruned80_quant-none?recipe_type=transfer_learn \
--recipe zoo:cv/detection/yolov5-x/pytorch/ultralytics/coco/pruned80_quant-none?recipe_type=transfer_learn \
--data VOC.yaml \
--patience 0 \
--hyp hyps/hyp.finetune.yaml
SparseZoo contains mutliple variants of each version of YOLOv5 at various levels of sparsity, which can be fine-tuned onto your dataset.
Because SparseML is integrated with YOLOv5, we can easily pass custom datasets to the training flows in the Ultralytics format.
There are three steps to creating a custom dataset for YOLOv5.
Ultralytics uses a YAML file to pass a dataset configuration that defines:
- The dataset root directory
path
and relative paths totrain
/val
/test
image directories (or *.txt files with image paths) - A class names dictionary
Here is an example for COCO128, an example small tutorial dataset composed of the first 128 images in COCO train2017. These same 128 images are used for both training and validation to verify our training pipeline is capable of overfitting.
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ./datasets/coco128 # dataset root dir
train: images/train2017 # train images (relative to 'path') 128 images
val: images/train2017 # val images (relative to 'path') 128 images
test: # test images (optional)
# Classes (80 COCO classes)
names:
0: person
1: bicycle
2: car
...
77: teddy bear
78: hair drier
79: toothbrush
After using a tool like Roboflow Annotate to label your data, export your labels to the YOLO Format, with one
*.txt
file per image (if no objects are in the image, no *.txt
file is required).
The *.txt
file specifications are:
- One row per object
- Each row is
class x_center y_center width height
format. - Box coordinates must be in normalized xywh format (from 0 - 1). If your boxes are in pixels, divide
x_center
andwidth
by image width, andy_center
andheight
by image height. - Class numbers are zero-indexed (start from 0).
Organize your train and val images and labels according to the example below. For the demo COCO128 file above, assumes /coco128
is inside a /datasets
directory in your current directory. YOLOv5 locates labels automatically for each image by replacing the last instance of /images/
in each image path with /labels/
. For example:
./datasets/coco128/images/im0.jpg # image
./datasets/coco128/labels/im0.txt # label
For more details, checkout the custom dataset set tutorial in the Ultralytics repository.
Let's try a real example with an aerial dataset.
The dataset is hosted on Google Drive (link to file).
Install gdown
and download/unzip the dataset:
pip install --upgrade gdown
gdown 1GWTv9s-H387X-6wxHf2lVllqEdIv2J7N
tar -xvf aerial-dataset.tar.gz
After unzipping, we can see the directory conforms to the Ultralytics format:
|-- aerial-dataset
|--train
|--images
|--00001_frame000000_original.jpg
...
|--labels
|--00001_frame000000_original.txt
...
|--val
|--images
|--00053_frame000000_original.jpg
...
|--labels
|--00053_frame000000_original.txt
...
Here is a sample label file for aerial-dataset/train/labels/00001_frame000000_original.txt
:
0 0.719010 0.124074 0.022396 0.083333
0 0.943229 0.133333 0.039583 0.037037
0 0.787240 0.153241 0.042188 0.041667
0 0.741667 0.121759 0.017708 0.073148
0 0.693229 0.100463 0.017708 0.063889
0 0.670312 0.097222 0.025000 0.075926
0 0.648177 0.077315 0.022396 0.069444
0 0.619531 0.050463 0.022396 0.056481
0 0.492448 0.078704 0.039062 0.059259
0 0.418229 0.806019 0.034375 0.065741
0 0.349479 0.646296 0.018750 0.064815
0 0.461458 0.916204 0.037500 0.052778
Run the following to visualize the data:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import random, cv2
from PIL import Image
plt.figure(figsize=(15, 15), facecolor='white')
filename_image = f"aerial-dataset/train/images/00001_frame000000_original.jpg"
filename_label = filename_image.replace('images','labels').replace('jpg','txt')
data = pd.read_csv(filename_label, header=None, delimiter=' ', names=["class", "x_center", "y_center", "width", "height"])
print(filename_image)
print(filename_label)
im = cv2.imread(filename_image)
im_size = im.shape[:2]
for _, bbox in data.iterrows():
cls, xc, yc, w, h = bbox
xmin = xc - w/2
ymin = yc - h/2
xmax = xc + w/2
ymax = yc + h/2
xmin *= im_size[1]
ymin *= im_size[0]
xmax *= im_size[1]
ymax *= im_size[0]
start_point = (int(xmin), int(ymin))
end_point = (int(xmax), int(ymax))
color = (0, 255, 0)
thickness = 2
im = cv2.rectangle(im, start_point, end_point, color, thickness)
plt.axis("off")
plt.imshow(im)
Save the following configuration file as aerial-dataset.yaml
:
# aerial-dataset.yaml
path: ./aerial-dataset
train:
- train/images
val:
- val/images
# Classes
nc: 1 # number of classes
names: ['object']
With the config file setup and data downloaded, we can simply swap in the dataset configuration file in place of the VOC.yaml
.
sparseml.yolov5.train \
--weights zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/pruned75_quant-none?recipe_type=transfer_learn \
--recipe zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/pruned75_quant-none?recipe_type=transfer_learn \
--recipe-args '{"num_epochs":30}' \
--data aerial-dataset.yaml \
--patience 0 \
--cfg yolov5s.yaml \
--hyp hyps/hyp.finetune.yaml
You will notice that we added a --recipe_args
argument, which updates the transfer
learning recipe to run for 30 epochs rather than 55 epochs. While you can always create
a custom recipe file and pass a local file to script, the --recipe_args
enables you
to modify on the fly.
Feel free to adjust the hyperparameters as needed!
The model achieves ~80% mAP@50.
Checkout DeepSparse for more details on deploying your sparse models with GPU-class performance.