-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmp3.c
119 lines (119 loc) · 4.85 KB
/
mp3.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
// MP 3: Due Sunday, Dec 30, 2012 at 11:59 p.m. PST
#include <wb.h>
#define TILE_SIZE 4
#define wbCheck(stmt) do { \
cudaError_t err = stmt; \
if (err != cudaSuccess) { \
wbLog(ERROR, "Failed to run stmt ", #stmt); \
return -1; \
} \
} while(0)
// Compute C = A * B
__global__ void matrixMultiplyShared(float * A, float * B, float * C,
int numARows, int numAColumns,
int numBRows, int numBColumns,
int numCRows, int numCColumns) {
//@@ Insert code to implement matrix multiplication here
//@@ You have to use shared memory for this MP
__shared__ float ds_M[TILE_SIZE][TILE_SIZE];
__shared__ float ds_N[TILE_SIZE][TILE_SIZE];
int bx = blockIdx.x;
int by = blockIdx.y;
int tx = threadIdx.x;
int ty = threadIdx.y;
int row = by * TILE_SIZE + ty;
int col = bx * TILE_SIZE + tx;
float pVal = 0;
for(int i = 0; i < (numAColumns-1)/TILE_SIZE+1; ++i){
if(row < numARows && (i * TILE_SIZE + tx) < numAColumns){
ds_M[ty][tx] = A[row * numAColumns + (i * TILE_SIZE + tx)];
} else {
ds_M[ty][tx] = 0;
}
if((i * TILE_SIZE + ty) < numBRows && col < numBColumns){
ds_N[ty][tx] = B[(i * TILE_SIZE + ty)*numBColumns+col];
} else {
ds_N[ty][tx] = 0;
}
__syncthreads();
if(row < numCRows && col < numCColumns) {
for(int j = 0; j < TILE_SIZE; ++j){
pVal += ds_M[ty][j] * ds_N[j][tx];
}
}
__syncthreads();
}
if(row < numCRows && col < numCColumns) C[row * numCColumns + col] = pVal;
}
int main(int argc, char ** argv) {
wbArg_t args;
float * hostA; // The A matrix
float * hostB; // The B matrix
float * hostC; // The output C matrix
float * deviceA;
float * deviceB;
float * deviceC;
int numARows; // number of rows in the matrix A
int numAColumns; // number of columns in the matrix A
int numBRows; // number of rows in the matrix B
int numBColumns; // number of columns in the matrix B
int numCRows; // number of rows in the matrix C (you have to set this)
int numCColumns; // number of columns in the matrix C (you have to set this)
args = wbArg_read(argc, argv);
wbTime_start(Generic, "Importing data and creating memory on host");
hostA = (float *) wbImport(wbArg_getInputFile(args, 0), &numARows, &numAColumns);
hostB = (float *) wbImport(wbArg_getInputFile(args, 1), &numBRows, &numBColumns);
//@@ Set numCRows and numCColumns
if(numAColumns != numBRows){
wbLog(ERROR, "input matrix dimensions are invalid");
return -1;
}
numCRows = numARows;
numCColumns = numBColumns;
//@@ Allocate the hostC matrix
int cSize = numCRows * numCColumns * sizeof(float);
hostC = (float *) malloc(cSize);
wbTime_stop(Generic, "Importing data and creating memory on host");
wbLog(TRACE, "The dimensions of A are ", numARows, "rows x ", numAColumns, "columns");
wbLog(TRACE, "The dimensions of B are ", numBRows, "rows x ", numBColumns, "columns");
wbLog(TRACE, "The dimensions of C are ", numCRows, "rows x ", numCColumns, "columns");
wbTime_start(GPU, "Allocating GPU memory.");
//@@ Allocate GPU memory here
int aSize = numARows * numAColumns * sizeof(float);
int bSize = numBRows * numBColumns * sizeof(float);
wbCheck(cudaMalloc((void **) &deviceA, aSize));
wbCheck(cudaMalloc((void **) &deviceB, bSize));
wbCheck(cudaMalloc((void **) &deviceC, cSize));
wbTime_stop(GPU, "Allocating GPU memory.");
wbTime_start(GPU, "Copying input memory to the GPU.");
//@@ Copy memory to the GPU here
wbCheck(cudaMemcpy(deviceA, hostA, aSize, cudaMemcpyHostToDevice));
wbCheck(cudaMemcpy(deviceB, hostB, bSize, cudaMemcpyHostToDevice));
wbTime_stop(GPU, "Copying input memory to the GPU.");
//@@ Initialize the grid and block dimensions here
dim3 dimGrid(ceil(numCColumns/TILE_SIZE), ceil(numCRows/TILE_SIZE), 1);
dim3 dimBlock(TILE_SIZE, TILE_SIZE, 1);
wbTime_start(Compute, "Performing CUDA computation");
//@@ Launch the GPU Kernel here
matrixMultiplyShared<<<dimGrid,dimBlock>>>(deviceA,deviceB,deviceC,
numARows,numAColumns,
numBRows,numBColumns,
numCRows,numCColumns);
cudaThreadSynchronize();
wbTime_stop(Compute, "Performing CUDA computation");
wbTime_start(Copy, "Copying output memory to the CPU");
//@@ Copy the GPU memory back to the CPU here
cudaMemcpy(hostC, deviceC, cSize, cudaMemcpyDeviceToHost);
wbTime_stop(Copy, "Copying output memory to the CPU");
wbTime_start(GPU, "Freeing GPU Memory");
//@@ Free the GPU memory here
wbCheck(cudaFree(deviceA));
wbCheck(cudaFree(deviceB));
wbCheck(cudaFree(deviceC));
wbTime_stop(GPU, "Freeing GPU Memory");
wbSolution(args, hostC, numCRows, numCColumns);
free(hostA);
free(hostB);
free(hostC);
return 0;
}