From 839956ea461908fbe74462264c8272a382383469 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Jos=C3=A9=20Valim?= Date: Tue, 24 Oct 2023 13:30:15 +0200 Subject: [PATCH 1/2] Use reduce_min by default --- lib/scholar/cluster/affinity_propagation.ex | 31 +++++++++++---------- 1 file changed, 17 insertions(+), 14 deletions(-) diff --git a/lib/scholar/cluster/affinity_propagation.ex b/lib/scholar/cluster/affinity_propagation.ex index 2e562933..c646f3d3 100644 --- a/lib/scholar/cluster/affinity_propagation.ex +++ b/lib/scholar/cluster/affinity_propagation.ex @@ -40,14 +40,16 @@ defmodule Scholar.Cluster.AffinityPropagation do """ ], preference: [ - type: :float, + type: {:or, [:float, :atom]}, + default: :reduce_min, doc: """ - Preferences for each point - points with larger values of preferences - are more likely to be chosen as exemplars. The number of clusters is - influenced by this option. If the preferences are not passed as arguments, - they will be set to the median of the input similarities (resulting in a - moderate number of clusters). For a smaller amount of clusters, this can - be set to the minimum value of the similarities. + How to compute the preferences for each point - points with larger values + of preferences are more likely to be chosen as exemplars. The number of clusters is + influenced by this option. + + The preferences is either an atom, each is a `Nx` reduction function to + apply on the input similarities (such as `:reduce_min`, `:median`, `:mean`, + etc) or a float. """ ], key: [ @@ -233,14 +235,15 @@ defmodule Scholar.Cluster.AffinityPropagation do defnp initialize_similarity(data, opts \\ []) do n = Nx.axis_size(data, 0) dist = -Scholar.Metrics.Distance.pairwise_squared_euclidean(data) + preference = initialize_preference(dist, opts[:preference]) + Nx.put_diagonal(dist, Nx.broadcast(preference, {n})) + end - fill_in = - case opts[:preference] do - nil -> Nx.broadcast(Nx.median(dist), {n}) - preference -> Nx.broadcast(preference, {n}) - end - - Nx.put_diagonal(dist, fill_in) + deftransformp initialize_preference(dist, preference) do + cond do + is_atom(preference) -> apply(Nx, preference, [dist]) + is_float(preference) -> preference + end end @doc """ From 7a8040531d8f1061509f777ebd7458b4233e3dd2 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Jos=C3=A9=20Valim?= Date: Tue, 24 Oct 2023 15:28:19 +0200 Subject: [PATCH 2/2] Fix tests --- lib/scholar/cluster/affinity_propagation.ex | 28 +++++++++---------- .../cluster/affinity_propagation_test.exs | 6 ++-- 2 files changed, 17 insertions(+), 17 deletions(-) diff --git a/lib/scholar/cluster/affinity_propagation.ex b/lib/scholar/cluster/affinity_propagation.ex index c646f3d3..7247ddec 100644 --- a/lib/scholar/cluster/affinity_propagation.ex +++ b/lib/scholar/cluster/affinity_propagation.ex @@ -96,21 +96,21 @@ defmodule Scholar.Cluster.AffinityPropagation do ## Examples iex> key = Nx.Random.key(42) - iex> x = Nx.tensor([[12,5,78,2], [1,-5,7,32], [-1,3,6,1], [1,-2,5,2]]) + iex> x = Nx.tensor([[12,5,78,2], [9,3,81,-2], [-1,3,6,1], [1,-2,5,2]]) iex> Scholar.Cluster.AffinityPropagation.fit(x, key: key) %Scholar.Cluster.AffinityPropagation{ - labels: Nx.tensor([0, 3, 3, 3]), - cluster_centers_indices: Nx.tensor([0, -1, -1, 3]), + labels: Nx.tensor([0, 0, 2, 2]), + cluster_centers_indices: Nx.tensor([0, -1, 2, -1]), cluster_centers: Nx.tensor( [ [12.0, 5.0, 78.0, 2.0], [:infinity, :infinity, :infinity, :infinity], - [:infinity, :infinity, :infinity, :infinity], - [1.0, -2.0, 5.0, 2.0] + [-1.0, 3.0, 6.0, 1.0], + [:infinity, :infinity, :infinity, :infinity] ] ), num_clusters: Nx.tensor(2, type: :u64), - iterations: Nx.tensor(18, type: :s64) + iterations: Nx.tensor(22, type: :s64) } """ deftransform fit(data, opts \\ []) do @@ -254,20 +254,20 @@ defmodule Scholar.Cluster.AffinityPropagation do ## Examples iex> key = Nx.Random.key(42) - iex> x = Nx.tensor([[12,5,78,2], [1,-5,7,32], [-1,3,6,1], [1,-2,5,2]]) + iex> x = Nx.tensor([[12,5,78,2], [9,3,81,-2], [-1,3,6,1], [1,-2,5,2]]) iex> model = Scholar.Cluster.AffinityPropagation.fit(x, key: key) iex> Scholar.Cluster.AffinityPropagation.prune(model) %Scholar.Cluster.AffinityPropagation{ - labels: Nx.tensor([0, 1, 1, 1]), - cluster_centers_indices: Nx.tensor([0, 3]), + labels: Nx.tensor([0, 0, 1, 1]), + cluster_centers_indices: Nx.tensor([0, 2]), cluster_centers: Nx.tensor( [ [12.0, 5.0, 78.0, 2.0], - [1.0, -2.0, 5.0, 2.0] + [-1.0, 3.0, 6.0, 1.0] ] ), num_clusters: Nx.tensor(2, type: :u64), - iterations: Nx.tensor(18, type: :s64) + iterations: Nx.tensor(22, type: :s64) } """ def prune( @@ -305,13 +305,13 @@ defmodule Scholar.Cluster.AffinityPropagation do ## Examples iex> key = Nx.Random.key(42) - iex> x = Nx.tensor([[12,5,78,2], [1,5,7,32], [1,3,6,1], [1,2,5,2]]) + iex> x = Nx.tensor([[12,5,78,2], [9,3,81,-2], [-1,3,6,1], [1,-2,5,2]]) iex> model = Scholar.Cluster.AffinityPropagation.fit(x, key: key) iex> model = Scholar.Cluster.AffinityPropagation.prune(model) - iex> Scholar.Cluster.AffinityPropagation.predict(model, Nx.tensor([[1,6,2,6], [8,3,8,2]])) + iex> Scholar.Cluster.AffinityPropagation.predict(model, Nx.tensor([[10,3,50,6], [8,3,8,2]])) #Nx.Tensor< s64[2] - [1, 1] + [0, 1] > """ defn predict(%__MODULE__{cluster_centers: cluster_centers} = _model, x) do diff --git a/test/scholar/cluster/affinity_propagation_test.exs b/test/scholar/cluster/affinity_propagation_test.exs index 320e4ced..f63e4160 100644 --- a/test/scholar/cluster/affinity_propagation_test.exs +++ b/test/scholar/cluster/affinity_propagation_test.exs @@ -68,7 +68,7 @@ defmodule Scholar.Cluster.AffinityPropagationTest do end test "fit and compute_values" do - model = AffinityPropagation.fit(x(), key: key()) + model = AffinityPropagation.fit(x(), key: key(), preference: :median) model = AffinityPropagation.prune(model) @@ -94,14 +94,14 @@ defmodule Scholar.Cluster.AffinityPropagationTest do end test "predict with pruning" do - model = AffinityPropagation.fit(x(), key: key()) + model = AffinityPropagation.fit(x(), key: key(), preference: :median) model = AffinityPropagation.prune(model) preds = AffinityPropagation.predict(model, x_test()) assert preds == Nx.tensor([0, 2, 0, 5, 5, 5, 2, 2, 5, 2]) end test "predict without pruning" do - model = AffinityPropagation.fit(x(), key: key()) + model = AffinityPropagation.fit(x(), key: key(), preference: :median) preds = AffinityPropagation.predict(model, x_test()) assert preds == Nx.tensor([2, 9, 2, 34, 34, 34, 9, 9, 34, 9]) end