-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathBP-orb_density.py
357 lines (326 loc) · 17.9 KB
/
BP-orb_density.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
# -*- coding: utf-8 -*-
"""
BinPo, TB-Poisson Solver for 2DES
Copyright (C) 2021 BinPo Team
BP-orb_density.py is part of BinPo.
BinPo is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
BinPo is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with BinPo. See ~/COPYING file or <https://www.gnu.org/licenses/>.
DESCRIPTION:
ORBITAL DECOMPOSITION OF ELECTRON DENSITY
BP-orb_density.py component allows for decomposing and plotting the
electron density according to the orbital character. At present, this
component is only available for cubic systems with t2g manifold, such
as STO, KTO and CTO.
"""
__author__ = "Emanuel A. Martinez"
__email__ = "[email protected]"
__copyright__ = "Copyright (C) 2021 BinPo Team"
__version__ = 1.1
__date__ = "August 9, 2022"
import numpy as np
import matplotlib.pyplot as plt
import scipy.linalg as LA
import BPmodule as BPM
import time as t
import datetime as dt
import argparse
import yaml
import logging
import os
# Loading the configuration files to set parameters not defined by terminal
#--------------------------------------------------------------------------------------------------------------------------
with open('./config_files/orb_density.yaml', 'r') as f:
try:
data = yaml.load(f, Loader = yaml.FullLoader)
except yaml.YAMLError as exc:
print ("Error in configuration file: ", exc)
#--------------------------------------------------------------------------------------------------------------------------
# Messages to print by terminal when checking the description with -h or --help command
msj_id = 'Identifier to compute the orbital decomposition of the electron density. String.'
msj_Nk = "Square root of the total number of points in 2D k-grid. Integer. It must be > 10."
msj_xy = 'Limits for the plot. Float (list). Introduce it as x_min x_max y_min y_max. If not, the limits will be authomatically set.'
msj_aa = 'Opacity of the curves shadowing. Float. It must be between 0.0 (transparent) and 1.0 (solid).'
description = "ORBITAL DECOMPOSITION OF ELECTRON DENSITY"
epilog = "By default, arguments not specified are taken from './config_files/orb_density.yaml'."
#--------------------------------------------------------------------------------------------------------------------------
# Passing arguments by terminal and setting their default values
parser = argparse.ArgumentParser(description = description, epilog = epilog)
parser.add_argument('-id', type = str, default = data['DENSITY_ANALYSIS']['identifier'], help = msj_id)
parser.add_argument('-nk', type = int, default = data['DENSITY_ANALYSIS']['sqrt_kgrid_numbers'], help = msj_Nk)
parser.add_argument('-aa', type = float, default = data['DENSITY_ANALYSIS']['PLOT_ADJUST']['alpha'], help = msj_aa)
parser.add_argument('-xy', nargs = 4, type = float, help = 'Limits for the plot.')
args = parser.parse_args()
#--------------------------------------------------------------------------------------------------------------------------
# Setting at once what depends on the identifier
identifier = args.id # Identifier for the calculation
# Loading the .YAML file created after SCP calculation
with open(identifier + '/' + identifier + '.yaml', 'r') as f:
try:
params = yaml.load(f, Loader=yaml.FullLoader)
except yaml.YAMLError as exc:
print ("Error in configuration file: ", exc)
# Loading the SC solution file
TBP = np.loadtxt(identifier + '/' + identifier + '_SCP.dat')
#--------------------------------------------------------------------------------------------------------------------------
# Copying the rest of the parameters updatable by terminal, except xy
ALPHA = args.aa
Nk = args.nk
#--------------------------------------------------------------------------------------------------------------------------
# Loading more parameters from the files
a0 = params['lattice_parameter'] # lattice parameter of cubic or hexagonal structure
T = params['temperature'] # temperature in K
bc1 = params['BC1_topmost_layer'] # bc value for potential V at the top-most layer
bc2 = params['BC2_in_bulk'] # bc value for V at the bottom-most layer
ef = params['Fermi_level'] # Fermi level in eV as LUL + dE
L = params['number_of_planes'] # number of planes
material = params['material'] # name of the material or system
face = params['crystal_face'] # confinement direction
dk_x, dk_y = params['k_shift'] # shift in k-grid
manifold = params['manifold'] # type of manifold
NWANN = int(params['Wannier_functions_number']) # number of elements in the MLWF basis
HOL = float(params['highest_occupied_level']) # highest occupied level (valence band maximum)
sgeom = params['system_geometry'] # unit-cell symmetry
#--------------------------------------------------------------------------------------------------------------------------
# Creating a logger object for the current program
log_path = identifier + '/' + identifier + '.log'
logger1 = logging.getLogger("BP-eslices")
logger1.setLevel(logging.INFO)
handler = logging.FileHandler(log_path, mode = 'a+')
handler.setFormatter(logging.Formatter("%(levelname)s : %(message)s, line %(lineno)d in %(module)s\n"))
logger1.addHandler(handler)
#--------------------------------------------------------------------------------------------------------------------------
def printlog(text, level = 'i'): # Simple function for general logging
if level == 'i':
print(text)
with open(log_path, mode = 'a+') as OF:
print(text, file = OF)
if level == 'w':
logger1.warning(text)
print('WARNING : ' + text + '\n')
if level == 'e':
logger1.error(text)
raise ValueError(text)
#--------------------------------------------------------------------------------------------------------------------------
def PartialChargePlotter(rho0, rho1, rho2, rho3, data3):
# unfolding data0 dictionary to load several details
# for the matplotlib plot
plotstyle = data3['PLOT_ADJUST']['plotstyle']
fig_size = data3['PLOT_ADJUST']['fig_size']
lw = data3['PLOT_ADJUST']['linewidth']
c0, c1, c2, c3 = data3['PLOT_ADJUST']['color_seq'].split(',')
ms = data3['PLOT_ADJUST']['markersize']
l3, b3, r3, t3 = data3['PLOT_ADJUST']['axis_adjust']
ptitle = data3['PLOT_ADJUST']['title']
ptitle_size = data3['PLOT_ADJUST']['title_size']
use_fill = data3['PLOT_ADJUST']['fill_curves']
xlabel = data3['LABELS']['xlabel']
xfontsize = data3['LABELS']['xfontsize']
ylabel = data3['LABELS']['ylabel']
yfontsize = data3['LABELS']['yfontsize']
tick_size = data3['LABELS']['ticksize']
use_legends = data3['LABELS']['legends']
legend_size = data3['LABELS']['legend_size']
save_data = data3['SAVING']['save_data']
save_plot = data3['SAVING']['save_plot']
pformat = data3['SAVING']['format']
resol = data3['SAVING']['dpi']
plt.style.use(plotstyle)
z = np.arange(L)
d = np.zeros_like(z)
fig, ax = plt.subplots(figsize = fig_size)
ax.plot(z, rho0, lw = lw, marker = 'o', ms = ms, label = 'total', color = c0, zorder = 10)
ax.plot(z, rho1, lw = lw, marker = 's', ms = ms, label = 'xy', color = c1, zorder = 20)
ax.plot(z, rho2, lw = lw, marker = 'd', ms = ms, label = 'yz', color = c2, zorder = 30)
ax.plot(z, rho3, lw = lw, marker = '<', ms = ms, label = 'zx', color = c3, zorder = 40)
if use_fill == True:
try:
ax.fill_between(list(z), list(rho0), where = rho0 >= d, interpolate = True, color = c0, alpha = ALPHA, zorder = 10)
ax.fill_between(list(z), list(rho1), where = rho1 >= d, interpolate = True, color = c1, alpha = ALPHA, zorder = 20)
ax.fill_between(list(z), list(rho2), where = rho2 >= d, interpolate = True, color = c2, alpha = ALPHA, zorder = 30)
ax.fill_between(list(z), list(rho3), where = rho3 >= d, interpolate = True, color = c3, alpha = ALPHA, zorder = 40)
except:
printlog('The fill under the curves could not be applied!', level = 'w')
#ax.plot(z, rho1 + rho2 + rho3, lw = lw, ls = 'dotted', label = 'cumulative') # check if the cumulative == total
ax.set_xlabel(xlabel, size = xfontsize)
ax.set_ylabel(ylabel, size = yfontsize)
ax.tick_params(labelsize = tick_size)
if len(ptitle) > 0:
ax.set_title(ptitle, fontsize = ptitle_size)
plt.subplots_adjust(left = l3, bottom = b3, right = r3, top = t3)
if args.xy:
ax.set_xlim(args.xy[0], args.xy[1])
ax.set_ylim(args.xy[2], args.xy[3])
plt.subplots_adjust(left = 0.15)
if use_legends == True:
plt.legend(loc = 'best', facecolor = 'w', framealpha = 0.6, fontsize = legend_size)
Lout = [z, rho0, rho1, rho2, rho3]
if save_data == True:
printlog('Saving data...')
np.savetxt(identifier + '/' + identifier + '_orb-dens.dat', np.array(Lout).T)
if save_plot == True:
printlog('Saving plot...')
plt.savefig(identifier + '/' + identifier + '_orb-dens' + pformat, dpi = resol)
return None
#--------------------------------------------------------------------------------------------------------------------------
# MAIN
#------------------------------------------------------------------------------------
# NOTE : At moment, this component is only available for cubic systems
# with t2g manifold, such as STO, KTO and CTO.
#####################################################################################
printlog('\n')
printlog('=========================================================================')
printlog('=========================================================================')
printlog(' BinPo ')
printlog('=========================================================================')
printlog('=========================================================================')
now = dt.datetime.now()
printlog('\tWELCOME TO THE TIGHT-BINDING POISSON CODE FOR 2DES!')
printlog('\n')
printlog('Author: Emanuel A. Martinez, Universidad Complutense de Madrid, Spain.')
printlog('\n')
printlog('---------------------------------------------------------------------')
printlog('\t ORBITAL DECOMPOSITION OF ELECTRON DENSITY')
printlog('---------------------------------------------------------------------')
printlog('\n')
printlog('BinPo, TB-Poisson Solver for 2DES\n'\
'Copyright (C) 2021 BinPo Team\n\n'\
'BP-orb_density.py is part of BinPo.\n\n'\
'BinPo is free software: you can redistribute it and/or modify\n'\
'it under the terms of the GNU General Public License as published by\n'\
'the Free Software Foundation, either version 3 of the License, or\n'\
'(at your option) any later version.\n\n'\
'BinPo is distributed in the hope that it will be useful,\n'\
'but WITHOUT ANY WARRANTY; without even the implied warranty of\n'\
'MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n'\
'GNU General Public License for more details.\n\n'\
'You should have received a copy of the GNU General Public License\n'\
'along with BinPo. See ~/COPYING file or <https://www.gnu.org/licenses/>.')
if dk_x > 1.0 or dk_y > 1.0:
printlog('The values for the k-grid shift exceeds the BZ1 periodicity!', label = 'w')
Kmesh = BPM.Kmeshgrid(Nk, delta_kx = dk_x, delta_ky = dk_y) # Generation of k-grid
Nk_min = 10 # lower limit for Nk
if Nk < Nk_min:
printlog('sqrt_kgrid_numbers must be greater than ' + str(Nk_min), level = 'e')
if manifold != 't2g':
printlog('\n')
printlog('Orbital decomposition of the electron density onto an arbitrary set of MLWFs is not implemented yet.', 'e')
printlog('\n')
now = dt.datetime.now()
printlog('\n')
printlog('---------------------------------------------------------------------')
printlog('Starting on ' + now.strftime("%d%b%Y") + ' at ' + now.strftime("%H:%M:%S"))
printlog('---------------------------------------------------------------------')
printlog('\n')
printlog('DETAILS:')
printlog('\tIdentifier: ' + identifier)
printlog('\tSurface : ' + material + '(' + face + ')')
printlog('\tNumber of planes: ' + str(L))
printlog('\tK-grid: ' + str(Nk) + ' x ' + str(Nk))
printlog('\tTemperature: ' + str(T) + ' K')
printlog('\tFermi level: ' + "{:.5f}".format(ef) + ' eV')
printlog('\n')
start = t.time() # general time reference
#############################################################################################################
# files loading and Wannier separation
printlog('Loading files...')
DD = {} # dictionary to save the r-space Hamiltonian elements separated by planes
for z in os.listdir('./Hr' + material + face):
Z = np.loadtxt('./Hr' + material + face + '/' + z)
DD[z.split('.')[0]] = BPM.Wann_Sep(Z, NWANN)
printlog("Transforming <0w|H|Rw'> to k-space...") # 2D Fourier transform of the <0 w|H|Rxy+Rz w'> elements
printlog("It could take a while...")
t0 = t.time()
DDT = {} # dictionary to save the k-space Hamiltonian elements
for key, val in DD.items(): # creating empty list inside DDT to set the size
DDT['T_' + key] = []
for key, val in DD.items(): # filling DDT with the 2D Fourier transformed Hamiltonian elements
DDT['T_' + key] = BPM.Hopping2D(Kmesh, val)
H = BPM.Quasi2DHamiltonian(DDT, L, NWANN) # initializing the Quasi2D Hamiltonian instance
BPM.Quasi2DHamiltonian.set_parameters(T, ef, Nk*Nk, HOL)
printlog('Done!')
printlog('Time spent: ' + "{:.2f}".format(t.time()-t0) + ' seg')
printlog('\n')
#############################################################################################################
t1 = t.time()
printlog('Constructing the slab Hamiltonian...')
Hk = H.HamiltonianTensor(NWANN) # creating Hamiltonian tensor
printlog('Done!')
printlog('Time spent: ' + "{:.2f}".format(t.time()-t1) + ' seg')
printlog('Setting crystal properties and initializing potential energy...')
V = BPM.PotentialEnergy(L, bc1, bc2) # initializing potential instance
V.update_potential(TBP.T[1]) # updating the potential instance with the SC potential values
crystal = BPM.CrystalFeatures(face, a0, material) # initializing the crystal instance
d_hkl = crystal.interplanar_distance() # interplanar distance
A_hkl = crystal.face_area() # area of 2D real lattice
printlog('Done!')
t2 = t.time()
printlog('Starting diagonalization and charge density calculation...')
printlog('It could take a while...')
Hv = V.to_tensor() # creating potential energy tensor
Lrho = [] # auxiliary list to save the electron density
Lrho_xy, Lrho_yz, Lrho_zx = [], [], [] # auxiliary list to save the electron density
# according to the orbital character
#--------to select the orbital indices
zx_u = np.arange(0,6*L,6)
zx_d = np.arange(1,6*L,6)
zx = np.sort(np.concatenate([zx_u,zx_d]))
yz_u = np.arange(2,6*L,6)
yz_d = np.arange(3,6*L,6)
yz = np.sort(np.concatenate([yz_u,yz_d]))
xy_u = np.arange(4,6*L,6)
xy_d = np.arange(5,6*L,6)
xy = np.sort(np.concatenate([xy_u,xy_d]))
#---------------------------------------
kBT_ext = 3 # How many kB*T intervals to take above the Fermi level
fLim = 1.01 # this factor increases a bit the value of HOL to set the lower bound in eigh method
for hk in Hk:
HT = hk + Hv
# It tries to use scipy routine, which is faster. Otherwise, numpy routine will be used.
try:
w, v = LA.eigh(HT, lower = True, overwrite_a = True, subset_by_value = (HOL*fLim, ef + kBT_ext*BPM.eVtoJ*BPM.kB*T))
except:
w0, v = np.linalg.eigh(HT, UPLO = 'L')
w = w0[np.where(w0<(ef + kBT_ext*BPM.eVtoJ*BPM.kB*T))]
Laux = []
Oc_xy, Oc_yz, Oc_zx = [], [], []
for i in range(len(w)):
Laux.append(BPM.Quasi2DHamiltonian.FermiOcc(w[i])*BPM.Quasi2DHamiltonian.SumInCell(v[:, i],V.L))
Oc_xy.append(BPM.Quasi2DHamiltonian.FermiOcc(w[i])*BPM.Quasi2DHamiltonian.SumInCell(v[:, i][xy],V.L))
Oc_yz.append(BPM.Quasi2DHamiltonian.FermiOcc(w[i])*BPM.Quasi2DHamiltonian.SumInCell(v[:, i][yz],V.L))
Oc_zx.append(BPM.Quasi2DHamiltonian.FermiOcc(w[i])*BPM.Quasi2DHamiltonian.SumInCell(v[:, i][zx],V.L))
Lrho.append(np.sum(np.array(Laux, dtype = object), axis = 0))
Lrho_xy.append(np.sum(np.array(Oc_xy, dtype = object), axis = 0))
Lrho_yz.append(np.sum(np.array(Oc_yz, dtype = object), axis = 0))
Lrho_zx.append(np.sum(np.array(Oc_zx, dtype = object), axis = 0))
Oc_xy.clear()
Oc_yz.clear()
Oc_zx.clear()
Laux.clear()
rho = np.sum(np.array(Lrho, dtype = object), axis = 0)/(Nk*Nk) #charge density in e/uc
rho_xy = np.sum(np.array(Lrho_xy, dtype = object), axis = 0)/(Nk*Nk)# xy charge density in e/uc
rho_yz = np.sum(np.array(Lrho_yz, dtype = object), axis = 0)/(Nk*Nk)# yz charge density in e/uc
rho_zx = np.sum(np.array(Lrho_zx, dtype = object), axis = 0)/(Nk*Nk)# zx charge density in e/uc
printlog('Done!')
printlog('Time spent: ' + "{:.2f}".format(t.time()-t2) + ' seg')
printlog('\n')
# plotting the result
PartialChargePlotter(rho, rho_xy, rho_yz, rho_zx, data['DENSITY_ANALYSIS'])
printlog('\n')
end = t.time()
printlog('Total time spent: ' + "{:.2f}".format(end-start) + ' seg')
printlog('\n')
printlog('============================================================================')
now2 = dt.datetime.now()
printlog('Finishing on ' + now2.strftime("%d%b%Y") + ' at ' + now2.strftime("%H:%M:%S"))
printlog('CALCULATION DONE!')
printlog('============================================================================')
printlog('\n')
plt.show()