forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
input_pipeline.py
302 lines (259 loc) · 11.4 KB
/
input_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT model input pipelines."""
import tensorflow as tf
def decode_record(record, name_to_features):
"""Decodes a record to a TensorFlow example."""
example = tf.io.parse_single_example(record, name_to_features)
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
# So cast all int64 to int32.
for name in list(example.keys()):
t = example[name]
if t.dtype == tf.int64:
t = tf.cast(t, tf.int32)
example[name] = t
return example
def single_file_dataset(input_file, name_to_features, num_samples=None):
"""Creates a single-file dataset to be passed for BERT custom training."""
# For training, we want a lot of parallel reading and shuffling.
# For eval, we want no shuffling and parallel reading doesn't matter.
d = tf.data.TFRecordDataset(input_file)
if num_samples:
d = d.take(num_samples)
d = d.map(
lambda record: decode_record(record, name_to_features),
num_parallel_calls=tf.data.experimental.AUTOTUNE)
# When `input_file` is a path to a single file or a list
# containing a single path, disable auto sharding so that
# same input file is sent to all workers.
if isinstance(input_file, str) or len(input_file) == 1:
options = tf.data.Options()
options.experimental_distribute.auto_shard_policy = (
tf.data.experimental.AutoShardPolicy.OFF)
d = d.with_options(options)
return d
def create_pretrain_dataset(input_patterns,
seq_length,
max_predictions_per_seq,
batch_size,
is_training=True,
input_pipeline_context=None,
use_next_sentence_label=True,
use_position_id=False,
output_fake_labels=True):
"""Creates input dataset from (tf)records files for pretraining."""
name_to_features = {
'input_ids':
tf.io.FixedLenFeature([seq_length], tf.int64),
'input_mask':
tf.io.FixedLenFeature([seq_length], tf.int64),
'segment_ids':
tf.io.FixedLenFeature([seq_length], tf.int64),
'masked_lm_positions':
tf.io.FixedLenFeature([max_predictions_per_seq], tf.int64),
'masked_lm_ids':
tf.io.FixedLenFeature([max_predictions_per_seq], tf.int64),
'masked_lm_weights':
tf.io.FixedLenFeature([max_predictions_per_seq], tf.float32),
}
if use_next_sentence_label:
name_to_features['next_sentence_labels'] = tf.io.FixedLenFeature([1],
tf.int64)
if use_position_id:
name_to_features['position_ids'] = tf.io.FixedLenFeature([seq_length],
tf.int64)
for input_pattern in input_patterns:
if not tf.io.gfile.glob(input_pattern):
raise ValueError('%s does not match any files.' % input_pattern)
dataset = tf.data.Dataset.list_files(input_patterns, shuffle=is_training)
if input_pipeline_context and input_pipeline_context.num_input_pipelines > 1:
dataset = dataset.shard(input_pipeline_context.num_input_pipelines,
input_pipeline_context.input_pipeline_id)
if is_training:
dataset = dataset.repeat()
# We set shuffle buffer to exactly match total number of
# training files to ensure that training data is well shuffled.
input_files = []
for input_pattern in input_patterns:
input_files.extend(tf.io.gfile.glob(input_pattern))
dataset = dataset.shuffle(len(input_files))
# In parallel, create tf record dataset for each train files.
# cycle_length = 8 means that up to 8 files will be read and deserialized in
# parallel. You may want to increase this number if you have a large number of
# CPU cores.
dataset = dataset.interleave(
tf.data.TFRecordDataset,
cycle_length=8,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
if is_training:
dataset = dataset.shuffle(100)
decode_fn = lambda record: decode_record(record, name_to_features)
dataset = dataset.map(
decode_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE)
def _select_data_from_record(record):
"""Filter out features to use for pretraining."""
x = {
'input_word_ids': record['input_ids'],
'input_mask': record['input_mask'],
'input_type_ids': record['segment_ids'],
'masked_lm_positions': record['masked_lm_positions'],
'masked_lm_ids': record['masked_lm_ids'],
'masked_lm_weights': record['masked_lm_weights'],
}
if use_next_sentence_label:
x['next_sentence_labels'] = record['next_sentence_labels']
if use_position_id:
x['position_ids'] = record['position_ids']
# TODO(hongkuny): Remove the fake labels after migrating bert pretraining.
if output_fake_labels:
return (x, record['masked_lm_weights'])
else:
return x
dataset = dataset.map(
_select_data_from_record,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
dataset = dataset.batch(batch_size, drop_remainder=is_training)
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)
return dataset
def create_classifier_dataset(file_path,
seq_length,
batch_size,
is_training=True,
input_pipeline_context=None,
label_type=tf.int64,
include_sample_weights=False,
num_samples=None):
"""Creates input dataset from (tf)records files for train/eval."""
name_to_features = {
'input_ids': tf.io.FixedLenFeature([seq_length], tf.int64),
'input_mask': tf.io.FixedLenFeature([seq_length], tf.int64),
'segment_ids': tf.io.FixedLenFeature([seq_length], tf.int64),
'label_ids': tf.io.FixedLenFeature([], label_type),
}
if include_sample_weights:
name_to_features['weight'] = tf.io.FixedLenFeature([], tf.float32)
dataset = single_file_dataset(file_path, name_to_features,
num_samples=num_samples)
# The dataset is always sharded by number of hosts.
# num_input_pipelines is the number of hosts rather than number of cores.
if input_pipeline_context and input_pipeline_context.num_input_pipelines > 1:
dataset = dataset.shard(input_pipeline_context.num_input_pipelines,
input_pipeline_context.input_pipeline_id)
def _select_data_from_record(record):
x = {
'input_word_ids': record['input_ids'],
'input_mask': record['input_mask'],
'input_type_ids': record['segment_ids']
}
y = record['label_ids']
if include_sample_weights:
w = record['weight']
return (x, y, w)
return (x, y)
if is_training:
dataset = dataset.shuffle(100)
dataset = dataset.repeat()
dataset = dataset.map(
_select_data_from_record,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
dataset = dataset.batch(batch_size, drop_remainder=is_training)
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)
return dataset
def create_squad_dataset(file_path,
seq_length,
batch_size,
is_training=True,
input_pipeline_context=None):
"""Creates input dataset from (tf)records files for train/eval."""
name_to_features = {
'input_ids': tf.io.FixedLenFeature([seq_length], tf.int64),
'input_mask': tf.io.FixedLenFeature([seq_length], tf.int64),
'segment_ids': tf.io.FixedLenFeature([seq_length], tf.int64),
}
if is_training:
name_to_features['start_positions'] = tf.io.FixedLenFeature([], tf.int64)
name_to_features['end_positions'] = tf.io.FixedLenFeature([], tf.int64)
else:
name_to_features['unique_ids'] = tf.io.FixedLenFeature([], tf.int64)
dataset = single_file_dataset(file_path, name_to_features)
# The dataset is always sharded by number of hosts.
# num_input_pipelines is the number of hosts rather than number of cores.
if input_pipeline_context and input_pipeline_context.num_input_pipelines > 1:
dataset = dataset.shard(input_pipeline_context.num_input_pipelines,
input_pipeline_context.input_pipeline_id)
def _select_data_from_record(record):
"""Dispatches record to features and labels."""
x, y = {}, {}
for name, tensor in record.items():
if name in ('start_positions', 'end_positions'):
y[name] = tensor
elif name == 'input_ids':
x['input_word_ids'] = tensor
elif name == 'segment_ids':
x['input_type_ids'] = tensor
else:
x[name] = tensor
return (x, y)
if is_training:
dataset = dataset.shuffle(100)
dataset = dataset.repeat()
dataset = dataset.map(
_select_data_from_record,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
dataset = dataset.batch(batch_size, drop_remainder=True)
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)
return dataset
def create_retrieval_dataset(file_path,
seq_length,
batch_size,
input_pipeline_context=None):
"""Creates input dataset from (tf)records files for scoring."""
name_to_features = {
'input_ids': tf.io.FixedLenFeature([seq_length], tf.int64),
'input_mask': tf.io.FixedLenFeature([seq_length], tf.int64),
'segment_ids': tf.io.FixedLenFeature([seq_length], tf.int64),
'example_id': tf.io.FixedLenFeature([1], tf.int64),
}
dataset = single_file_dataset(file_path, name_to_features)
# The dataset is always sharded by number of hosts.
# num_input_pipelines is the number of hosts rather than number of cores.
if input_pipeline_context and input_pipeline_context.num_input_pipelines > 1:
dataset = dataset.shard(input_pipeline_context.num_input_pipelines,
input_pipeline_context.input_pipeline_id)
def _select_data_from_record(record):
x = {
'input_word_ids': record['input_ids'],
'input_mask': record['input_mask'],
'input_type_ids': record['segment_ids']
}
y = record['example_id']
return (x, y)
dataset = dataset.map(
_select_data_from_record,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
dataset = dataset.batch(batch_size, drop_remainder=False)
def _pad_to_batch(x, y):
cur_size = tf.shape(y)[0]
pad_size = batch_size - cur_size
pad_ids = tf.zeros(shape=[pad_size, seq_length], dtype=tf.int32)
for key in ('input_word_ids', 'input_mask', 'input_type_ids'):
x[key] = tf.concat([x[key], pad_ids], axis=0)
pad_labels = -tf.ones(shape=[pad_size, 1], dtype=tf.int32)
y = tf.concat([y, pad_labels], axis=0)
return x, y
dataset = dataset.map(
_pad_to_batch,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)
return dataset