forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
transformer.py
550 lines (471 loc) · 21.3 KB
/
transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Defines the Transformer model in TF 2.0.
Model paper: https://arxiv.org/pdf/1706.03762.pdf
Transformer model code source: https://github.com/tensorflow/tensor2tensor
"""
import tensorflow as tf
from official.nlp.modeling.layers import position_embedding
from official.nlp.modeling.ops import beam_search
from official.nlp.transformer import attention_layer
from official.nlp.transformer import embedding_layer
from official.nlp.transformer import ffn_layer
from official.nlp.transformer import metrics
from official.nlp.transformer import model_utils
from official.nlp.transformer.utils.tokenizer import EOS_ID
# Disable the not-callable lint error, since it claims many objects are not
# callable when they actually are.
# pylint: disable=not-callable
def create_model(params, is_train):
"""Creates transformer model."""
with tf.name_scope("model"):
if is_train:
inputs = tf.keras.layers.Input((None,), dtype="int64", name="inputs")
targets = tf.keras.layers.Input((None,), dtype="int64", name="targets")
internal_model = Transformer(params, name="transformer_v2")
logits = internal_model([inputs, targets], training=is_train)
vocab_size = params["vocab_size"]
label_smoothing = params["label_smoothing"]
if params["enable_metrics_in_training"]:
logits = metrics.MetricLayer(vocab_size)([logits, targets])
logits = tf.keras.layers.Lambda(
lambda x: x, name="logits", dtype=tf.float32)(
logits)
model = tf.keras.Model([inputs, targets], logits)
loss = metrics.transformer_loss(logits, targets, label_smoothing,
vocab_size)
model.add_loss(loss)
return model
else:
inputs = tf.keras.layers.Input((None,), dtype="int64", name="inputs")
internal_model = Transformer(params, name="transformer_v2")
ret = internal_model([inputs], training=is_train)
outputs, scores = ret["outputs"], ret["scores"]
return tf.keras.Model(inputs, [outputs, scores])
class Transformer(tf.keras.Model):
"""Transformer model with Keras.
Implemented as described in: https://arxiv.org/pdf/1706.03762.pdf
The Transformer model consists of an encoder and decoder. The input is an int
sequence (or a batch of sequences). The encoder produces a continuous
representation, and the decoder uses the encoder output to generate
probabilities for the output sequence.
"""
def __init__(self, params, name=None):
"""Initialize layers to build Transformer model.
Args:
params: hyperparameter object defining layer sizes, dropout values, etc.
name: name of the model.
"""
super(Transformer, self).__init__(name=name)
self.params = params
self.embedding_softmax_layer = embedding_layer.EmbeddingSharedWeights(
params["vocab_size"], params["hidden_size"])
self.encoder_stack = EncoderStack(params)
self.decoder_stack = DecoderStack(params)
self.position_embedding = position_embedding.RelativePositionEmbedding(
hidden_size=self.params["hidden_size"])
def get_config(self):
return {
"params": self.params,
}
def call(self, inputs, training):
"""Calculate target logits or inferred target sequences.
Args:
inputs: input tensor list of size 1 or 2.
First item, inputs: int tensor with shape [batch_size, input_length].
Second item (optional), targets: None or int tensor with shape
[batch_size, target_length].
training: boolean, whether in training mode or not.
Returns:
If targets is defined, then return logits for each word in the target
sequence. float tensor with shape [batch_size, target_length, vocab_size]
If target is none, then generate output sequence one token at a time.
returns a dictionary {
outputs: int tensor with shape [batch_size, decoded_length]
scores: float tensor with shape [batch_size]}
Even when float16 is used, the output tensor(s) are always float32.
Raises:
NotImplementedError: If try to use padded decode method on CPU/GPUs.
"""
inputs = inputs if isinstance(inputs, list) else [inputs]
if len(inputs) == 2:
inputs, targets = inputs[0], inputs[1]
else:
# Decoding path.
inputs, targets = inputs[0], None
if self.params["padded_decode"]:
if not self.params["num_replicas"]:
raise NotImplementedError(
"Padded decoding on CPU/GPUs is not supported.")
decode_batch_size = int(self.params["decode_batch_size"] /
self.params["num_replicas"])
inputs.set_shape([decode_batch_size, self.params["decode_max_length"]])
# Variance scaling is used here because it seems to work in many problems.
# Other reasonable initializers may also work just as well.
with tf.name_scope("Transformer"):
# Calculate attention bias for encoder self-attention and decoder
# multi-headed attention layers.
attention_bias = model_utils.get_padding_bias(inputs)
# Run the inputs through the encoder layer to map the symbol
# representations to continuous representations.
encoder_outputs = self.encode(inputs, attention_bias, training)
# Generate output sequence if targets is None, or return logits if target
# sequence is known.
if targets is None:
return self.predict(encoder_outputs, attention_bias, training)
else:
logits = self.decode(targets, encoder_outputs, attention_bias, training)
return logits
def encode(self, inputs, attention_bias, training):
"""Generate continuous representation for inputs.
Args:
inputs: int tensor with shape [batch_size, input_length].
attention_bias: float tensor with shape [batch_size, 1, 1, input_length].
training: boolean, whether in training mode or not.
Returns:
float tensor with shape [batch_size, input_length, hidden_size]
"""
with tf.name_scope("encode"):
# Prepare inputs to the layer stack by adding positional encodings and
# applying dropout.
embedded_inputs = self.embedding_softmax_layer(inputs)
embedded_inputs = tf.cast(embedded_inputs, self.params["dtype"])
inputs_padding = model_utils.get_padding(inputs)
attention_bias = tf.cast(attention_bias, self.params["dtype"])
with tf.name_scope("add_pos_encoding"):
pos_encoding = self.position_embedding(inputs=embedded_inputs)
pos_encoding = tf.cast(pos_encoding, self.params["dtype"])
encoder_inputs = embedded_inputs + pos_encoding
if training:
encoder_inputs = tf.nn.dropout(
encoder_inputs, rate=self.params["layer_postprocess_dropout"])
return self.encoder_stack(
encoder_inputs, attention_bias, inputs_padding, training=training)
def decode(self, targets, encoder_outputs, attention_bias, training):
"""Generate logits for each value in the target sequence.
Args:
targets: target values for the output sequence. int tensor with shape
[batch_size, target_length]
encoder_outputs: continuous representation of input sequence. float tensor
with shape [batch_size, input_length, hidden_size]
attention_bias: float tensor with shape [batch_size, 1, 1, input_length]
training: boolean, whether in training mode or not.
Returns:
float32 tensor with shape [batch_size, target_length, vocab_size]
"""
with tf.name_scope("decode"):
# Prepare inputs to decoder layers by shifting targets, adding positional
# encoding and applying dropout.
decoder_inputs = self.embedding_softmax_layer(targets)
decoder_inputs = tf.cast(decoder_inputs, self.params["dtype"])
attention_bias = tf.cast(attention_bias, self.params["dtype"])
with tf.name_scope("shift_targets"):
# Shift targets to the right, and remove the last element
decoder_inputs = tf.pad(decoder_inputs,
[[0, 0], [1, 0], [0, 0]])[:, :-1, :]
with tf.name_scope("add_pos_encoding"):
length = tf.shape(decoder_inputs)[1]
pos_encoding = self.position_embedding(decoder_inputs)
pos_encoding = tf.cast(pos_encoding, self.params["dtype"])
decoder_inputs += pos_encoding
if training:
decoder_inputs = tf.nn.dropout(
decoder_inputs, rate=self.params["layer_postprocess_dropout"])
# Run values
decoder_self_attention_bias = model_utils.get_decoder_self_attention_bias(
length, dtype=self.params["dtype"])
outputs = self.decoder_stack(
decoder_inputs,
encoder_outputs,
decoder_self_attention_bias,
attention_bias,
training=training)
logits = self.embedding_softmax_layer(outputs, mode="linear")
logits = tf.cast(logits, tf.float32)
return logits
def _get_symbols_to_logits_fn(self, max_decode_length, training):
"""Returns a decoding function that calculates logits of the next tokens."""
timing_signal = self.position_embedding(
inputs=None, length=max_decode_length + 1)
timing_signal = tf.cast(timing_signal, self.params["dtype"])
decoder_self_attention_bias = model_utils.get_decoder_self_attention_bias(
max_decode_length, dtype=self.params["dtype"])
def symbols_to_logits_fn(ids, i, cache):
"""Generate logits for next potential IDs.
Args:
ids: Current decoded sequences. int tensor with shape [batch_size *
beam_size, i + 1].
i: Loop index.
cache: dictionary of values storing the encoder output, encoder-decoder
attention bias, and previous decoder attention values.
Returns:
Tuple of
(logits with shape [batch_size * beam_size, vocab_size],
updated cache values)
"""
# Set decoder input to the last generated IDs
decoder_input = ids[:, -1:]
# Preprocess decoder input by getting embeddings and adding timing signal.
decoder_input = self.embedding_softmax_layer(decoder_input)
decoder_input += timing_signal[i]
if self.params["padded_decode"]:
bias_shape = decoder_self_attention_bias.shape.as_list()
self_attention_bias = tf.slice(
decoder_self_attention_bias, [0, 0, i, 0],
[bias_shape[0], bias_shape[1], 1, bias_shape[3]])
else:
self_attention_bias = decoder_self_attention_bias[:, :, i:i + 1, :i + 1]
decoder_outputs = self.decoder_stack(
decoder_input,
cache.get("encoder_outputs"),
self_attention_bias,
cache.get("encoder_decoder_attention_bias"),
training=training,
cache=cache,
decode_loop_step=i if self.params["padded_decode"] else None)
logits = self.embedding_softmax_layer(decoder_outputs, mode="linear")
logits = tf.squeeze(logits, axis=[1])
return logits, cache
return symbols_to_logits_fn
def predict(self, encoder_outputs, encoder_decoder_attention_bias, training):
"""Return predicted sequence."""
encoder_outputs = tf.cast(encoder_outputs, self.params["dtype"])
if self.params["padded_decode"]:
batch_size = encoder_outputs.shape.as_list()[0]
input_length = encoder_outputs.shape.as_list()[1]
else:
batch_size = tf.shape(encoder_outputs)[0]
input_length = tf.shape(encoder_outputs)[1]
max_decode_length = input_length + self.params["extra_decode_length"]
encoder_decoder_attention_bias = tf.cast(encoder_decoder_attention_bias,
self.params["dtype"])
symbols_to_logits_fn = self._get_symbols_to_logits_fn(
max_decode_length, training)
# Create initial set of IDs that will be passed into symbols_to_logits_fn.
initial_ids = tf.zeros([batch_size], dtype=tf.int32)
# Create cache storing decoder attention values for each layer.
# pylint: disable=g-complex-comprehension
init_decode_length = (
max_decode_length if self.params["padded_decode"] else 0)
num_heads = self.params["num_heads"]
dim_per_head = self.params["hidden_size"] // num_heads
cache = {
"layer_%d" % layer: {
"k":
tf.zeros(
[batch_size, init_decode_length, num_heads, dim_per_head],
dtype=self.params["dtype"]),
"v":
tf.zeros(
[batch_size, init_decode_length, num_heads, dim_per_head],
dtype=self.params["dtype"])
} for layer in range(self.params["num_hidden_layers"])
}
# pylint: enable=g-complex-comprehension
# Add encoder output and attention bias to the cache.
cache["encoder_outputs"] = encoder_outputs
cache["encoder_decoder_attention_bias"] = encoder_decoder_attention_bias
# Use beam search to find the top beam_size sequences and scores.
decoded_ids, scores = beam_search.sequence_beam_search(
symbols_to_logits_fn=symbols_to_logits_fn,
initial_ids=initial_ids,
initial_cache=cache,
vocab_size=self.params["vocab_size"],
beam_size=self.params["beam_size"],
alpha=self.params["alpha"],
max_decode_length=max_decode_length,
eos_id=EOS_ID,
padded_decode=self.params["padded_decode"],
dtype=self.params["dtype"])
# Get the top sequence for each batch element
top_decoded_ids = decoded_ids[:, 0, 1:]
top_scores = scores[:, 0]
return {"outputs": top_decoded_ids, "scores": top_scores}
class PrePostProcessingWrapper(tf.keras.layers.Layer):
"""Wrapper class that applies layer pre-processing and post-processing."""
def __init__(self, layer, params):
super(PrePostProcessingWrapper, self).__init__()
self.layer = layer
self.params = params
self.postprocess_dropout = params["layer_postprocess_dropout"]
def build(self, input_shape):
# Create normalization layer
self.layer_norm = tf.keras.layers.LayerNormalization(
epsilon=1e-6, dtype="float32")
super(PrePostProcessingWrapper, self).build(input_shape)
def get_config(self):
return {
"params": self.params,
}
def call(self, x, *args, **kwargs):
"""Calls wrapped layer with same parameters."""
# Preprocessing: apply layer normalization
training = kwargs["training"]
y = self.layer_norm(x)
# Get layer output
y = self.layer(y, *args, **kwargs)
# Postprocessing: apply dropout and residual connection
if training:
y = tf.nn.dropout(y, rate=self.postprocess_dropout)
return x + y
class EncoderStack(tf.keras.layers.Layer):
"""Transformer encoder stack.
The encoder stack is made up of N identical layers. Each layer is composed
of the sublayers:
1. Self-attention layer
2. Feedforward network (which is 2 fully-connected layers)
"""
def __init__(self, params):
super(EncoderStack, self).__init__()
self.params = params
self.layers = []
def build(self, input_shape):
"""Builds the encoder stack."""
params = self.params
for _ in range(params["num_hidden_layers"]):
# Create sublayers for each layer.
self_attention_layer = attention_layer.SelfAttention(
params["hidden_size"], params["num_heads"],
params["attention_dropout"])
feed_forward_network = ffn_layer.FeedForwardNetwork(
params["hidden_size"], params["filter_size"], params["relu_dropout"])
self.layers.append([
PrePostProcessingWrapper(self_attention_layer, params),
PrePostProcessingWrapper(feed_forward_network, params)
])
# Create final layer normalization layer.
self.output_normalization = tf.keras.layers.LayerNormalization(
epsilon=1e-6, dtype="float32")
super(EncoderStack, self).build(input_shape)
def get_config(self):
return {
"params": self.params,
}
def call(self, encoder_inputs, attention_bias, inputs_padding, training):
"""Return the output of the encoder layer stacks.
Args:
encoder_inputs: tensor with shape [batch_size, input_length, hidden_size]
attention_bias: bias for the encoder self-attention layer. [batch_size, 1,
1, input_length]
inputs_padding: tensor with shape [batch_size, input_length], inputs with
zero paddings.
training: boolean, whether in training mode or not.
Returns:
Output of encoder layer stack.
float32 tensor with shape [batch_size, input_length, hidden_size]
"""
for n, layer in enumerate(self.layers):
# Run inputs through the sublayers.
self_attention_layer = layer[0]
feed_forward_network = layer[1]
with tf.name_scope("layer_%d" % n):
with tf.name_scope("self_attention"):
encoder_inputs = self_attention_layer(
encoder_inputs, attention_bias, training=training)
with tf.name_scope("ffn"):
encoder_inputs = feed_forward_network(
encoder_inputs, training=training)
return self.output_normalization(encoder_inputs)
class DecoderStack(tf.keras.layers.Layer):
"""Transformer decoder stack.
Like the encoder stack, the decoder stack is made up of N identical layers.
Each layer is composed of the sublayers:
1. Self-attention layer
2. Multi-headed attention layer combining encoder outputs with results from
the previous self-attention layer.
3. Feedforward network (2 fully-connected layers)
"""
def __init__(self, params):
super(DecoderStack, self).__init__()
self.params = params
self.layers = []
def build(self, input_shape):
"""Builds the decoder stack."""
params = self.params
for _ in range(params["num_hidden_layers"]):
self_attention_layer = attention_layer.SelfAttention(
params["hidden_size"], params["num_heads"],
params["attention_dropout"])
enc_dec_attention_layer = attention_layer.Attention(
params["hidden_size"], params["num_heads"],
params["attention_dropout"])
feed_forward_network = ffn_layer.FeedForwardNetwork(
params["hidden_size"], params["filter_size"], params["relu_dropout"])
self.layers.append([
PrePostProcessingWrapper(self_attention_layer, params),
PrePostProcessingWrapper(enc_dec_attention_layer, params),
PrePostProcessingWrapper(feed_forward_network, params)
])
self.output_normalization = tf.keras.layers.LayerNormalization(
epsilon=1e-6, dtype="float32")
super(DecoderStack, self).build(input_shape)
def get_config(self):
return {
"params": self.params,
}
def call(self,
decoder_inputs,
encoder_outputs,
decoder_self_attention_bias,
attention_bias,
training,
cache=None,
decode_loop_step=None):
"""Return the output of the decoder layer stacks.
Args:
decoder_inputs: A tensor with shape [batch_size, target_length,
hidden_size].
encoder_outputs: A tensor with shape [batch_size, input_length,
hidden_size]
decoder_self_attention_bias: A tensor with shape [1, 1, target_len,
target_length], the bias for decoder self-attention layer.
attention_bias: A tensor with shape [batch_size, 1, 1, input_length], the
bias for encoder-decoder attention layer.
training: A bool, whether in training mode or not.
cache: (Used for fast decoding) A nested dictionary storing previous
decoder self-attention values. The items are:
{layer_n: {"k": A tensor with shape [batch_size, i, key_channels],
"v": A tensor with shape [batch_size, i, value_channels]},
...}
decode_loop_step: An integer, the step number of the decoding loop. Used
only for autoregressive inference on TPU.
Returns:
Output of decoder layer stack.
float32 tensor with shape [batch_size, target_length, hidden_size]
"""
for n, layer in enumerate(self.layers):
self_attention_layer = layer[0]
enc_dec_attention_layer = layer[1]
feed_forward_network = layer[2]
# Run inputs through the sublayers.
layer_name = "layer_%d" % n
layer_cache = cache[layer_name] if cache is not None else None
with tf.name_scope(layer_name):
with tf.name_scope("self_attention"):
decoder_inputs = self_attention_layer(
decoder_inputs,
decoder_self_attention_bias,
training=training,
cache=layer_cache,
decode_loop_step=decode_loop_step)
with tf.name_scope("encdec_attention"):
decoder_inputs = enc_dec_attention_layer(
decoder_inputs,
encoder_outputs,
attention_bias,
training=training)
with tf.name_scope("ffn"):
decoder_inputs = feed_forward_network(
decoder_inputs, training=training)
return self.output_normalization(decoder_inputs)