forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
transformer_forward_test.py
157 lines (134 loc) · 5.91 KB
/
transformer_forward_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Forward pass test for Transformer model refactoring."""
import numpy as np
import tensorflow as tf
from official.nlp.modeling import models
from official.nlp.transformer import metrics
from official.nlp.transformer import model_params
from official.nlp.transformer import transformer
def _count_params(layer, trainable_only=True):
"""Returns the count of all model parameters, or just trainable ones."""
if not trainable_only:
return layer.count_params()
else:
return int(
np.sum([
tf.keras.backend.count_params(p) for p in layer.trainable_weights
]))
def _create_model(params, is_train):
"""Creates transformer model."""
encdec_kwargs = dict(
num_layers=params["num_hidden_layers"],
num_attention_heads=params["num_heads"],
intermediate_size=params["filter_size"],
activation="relu",
dropout_rate=params["relu_dropout"],
attention_dropout_rate=params["attention_dropout"],
use_bias=False,
norm_first=True,
norm_epsilon=1e-6,
intermediate_dropout=params["relu_dropout"])
encoder_layer = models.TransformerEncoder(**encdec_kwargs)
decoder_layer = models.TransformerDecoder(**encdec_kwargs)
model_kwargs = dict(
vocab_size=params["vocab_size"],
embedding_width=params["hidden_size"],
dropout_rate=params["layer_postprocess_dropout"],
padded_decode=params["padded_decode"],
decode_max_length=params["decode_max_length"],
dtype=params["dtype"],
extra_decode_length=params["extra_decode_length"],
beam_size=params["beam_size"],
alpha=params["alpha"],
encoder_layer=encoder_layer,
decoder_layer=decoder_layer,
name="transformer_v2")
if is_train:
inputs = tf.keras.layers.Input((None,), dtype="int64", name="inputs")
targets = tf.keras.layers.Input((None,), dtype="int64", name="targets")
internal_model = models.Seq2SeqTransformer(**model_kwargs)
logits = internal_model(
dict(inputs=inputs, targets=targets), training=is_train)
vocab_size = params["vocab_size"]
label_smoothing = params["label_smoothing"]
if params["enable_metrics_in_training"]:
logits = metrics.MetricLayer(vocab_size)([logits, targets])
logits = tf.keras.layers.Lambda(
lambda x: x, name="logits", dtype=tf.float32)(
logits)
model = tf.keras.Model([inputs, targets], logits)
loss = metrics.transformer_loss(logits, targets, label_smoothing,
vocab_size)
model.add_loss(loss)
return model
batch_size = params["decode_batch_size"] if params["padded_decode"] else None
inputs = tf.keras.layers.Input((None,),
batch_size=batch_size,
dtype="int64",
name="inputs")
internal_model = models.Seq2SeqTransformer(**model_kwargs)
ret = internal_model(dict(inputs=inputs), training=is_train)
outputs, scores = ret["outputs"], ret["scores"]
return tf.keras.Model(inputs, [outputs, scores])
class TransformerForwardTest(tf.test.TestCase):
def setUp(self):
super(TransformerForwardTest, self).setUp()
self.params = params = model_params.TINY_PARAMS
params["batch_size"] = params["default_batch_size"] = 16
params["hidden_size"] = 12
params["num_hidden_layers"] = 3
params["filter_size"] = 14
params["num_heads"] = 2
params["vocab_size"] = 41
params["extra_decode_length"] = 0
params["beam_size"] = 3
params["dtype"] = tf.float32
params["layer_postprocess_dropout"] = 0.0
params["attention_dropout"] = 0.0
params["relu_dropout"] = 0.0
def test_forward_pass_train(self):
# Set input_len different from target_len
inputs = np.asarray([[5, 2, 1], [7, 5, 0], [1, 4, 0], [7, 5, 11]])
targets = np.asarray([[4, 3, 4, 0], [13, 19, 17, 8], [20, 14, 1, 2],
[5, 7, 3, 0]])
# src_model is the original model before refactored.
src_model = transformer.create_model(self.params, True)
src_num_weights = _count_params(src_model)
src_weights = src_model.get_weights()
src_model_output = src_model([inputs, targets], training=True)
# dest_model is the refactored model.
dest_model = _create_model(self.params, True)
dest_num_weights = _count_params(dest_model)
self.assertEqual(src_num_weights, dest_num_weights)
dest_model.set_weights(src_weights)
dest_model_output = dest_model([inputs, targets], training=True)
self.assertAllEqual(src_model_output, dest_model_output)
def test_forward_pass_not_train(self):
inputs = np.asarray([[5, 2, 1], [7, 5, 0], [1, 4, 0], [7, 5, 11]])
# src_model is the original model before refactored.
src_model = transformer.create_model(self.params, False)
src_num_weights = _count_params(src_model)
src_weights = src_model.get_weights()
src_model_output = src_model([inputs], training=False)
# dest_model is the refactored model.
dest_model = _create_model(self.params, False)
dest_num_weights = _count_params(dest_model)
self.assertEqual(src_num_weights, dest_num_weights)
dest_model.set_weights(src_weights)
dest_model_output = dest_model([inputs], training=False)
self.assertAllEqual(src_model_output[0], dest_model_output[0])
self.assertAllEqual(src_model_output[1], dest_model_output[1])
if __name__ == "__main__":
tf.test.main()