forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
training_utils.py
305 lines (262 loc) · 11.4 KB
/
training_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""XLNet training utils."""
import os
import re
from typing import Any, Callable, Dict, Optional, Text
from absl import logging
import tensorflow as tf
from official.nlp.bert import model_training_utils
from official.nlp.xlnet import data_utils
# pytype: disable=attribute-error
# pylint: disable=g-bare-generic,unused-import
_MIN_SUMMARY_STEPS = 10
def _save_checkpoint(checkpoint, model_dir, checkpoint_prefix):
"""Saves model to with provided checkpoint prefix."""
checkpoint_path = os.path.join(model_dir, checkpoint_prefix)
saved_path = checkpoint.save(checkpoint_path)
logging.info("Saving model as TF checkpoint: %s", saved_path)
return
def _float_metric_value(metric):
"""Gets the value of a float-value keras metric."""
return metric.result().numpy().astype(float)
def train(
strategy: tf.distribute.Strategy,
model_fn: Callable,
input_meta_data: Dict,
train_input_fn: Callable,
total_training_steps: int,
steps_per_loop: int,
optimizer: tf.keras.optimizers.Optimizer,
learning_rate_fn: tf.keras.optimizers.schedules.LearningRateSchedule,
eval_fn: Optional[Callable[[tf.keras.Model, int, tf.summary.SummaryWriter],
Any]] = None,
metric_fn: Optional[Callable[[], tf.keras.metrics.Metric]] = None,
init_checkpoint: Optional[Text] = None,
init_from_transformerxl: Optional[bool] = False,
model_dir: Optional[Text] = None,
save_steps: Optional[int] = None,
run_eagerly: Optional[bool] = False):
"""Runs customized training.
Args:
strategy: Distribution strategy on which to run low level training loop.
model_fn: The function returns a keras.Model.
input_meta_data: A dictionary of params: `mem_len`, `lr_layer_decay_rate`,
`n_layer`, `batch_size_per_core` and `d_model`.
train_input_fn: Function returns a tf.data.Dataset used for training.
total_training_steps: Number of steps to train in total.
steps_per_loop: Number of steps per graph-mode loop. In order to reduce
communication in eager context, training logs are printed every
steps_per_loop.
optimizer: The optimizer for model.
learning_rate_fn: the learning rate schedule.
eval_fn: A callback of evaluation function, that takes a keras.Model,
current step and evaluation summary writer.
metric_fn: A metrics function returns a Keras Metric object to record
evaluation result using evaluation dataset or with training dataset
after every epoch.
init_checkpoint: Optional checkpoint to load to `sub_model` returned by
`model_fn`.
init_from_transformerxl: Whether to load to `transformerxl_model` of
`model_fn`.
model_dir: The directory of model (checkpoints, summaries).
save_steps: The frequency to save checkpoints. Every save_steps, we save a
model checkpoint. Model checkpoint will be saved and evaluation will be
conducted if evaluation dataset is provided.
run_eagerly: Whether to run training eagerly.
Returns:
Last training step logits if training happens, otherwise returns None.
Raises:
TypeError: if model directory is not specified.
"""
required_arguments = [
train_input_fn, total_training_steps, steps_per_loop, optimizer,
learning_rate_fn, save_steps
]
if [arg for arg in required_arguments if arg is None]:
raise ValueError("`train_input_fn`, `total_training_steps`, "
"`steps_per_loop`, `optimizer`, `save_steps` and "
"`learning_rate_fn` are required parameters.")
if not model_dir:
raise TypeError("Model directory must be specified.")
train_iterator = data_utils.get_input_iterator(train_input_fn, strategy)
if not tf.io.gfile.exists(model_dir):
tf.io.gfile.mkdir(model_dir)
# Create summary writers
summary_dir = os.path.join(model_dir, "summaries")
if not tf.io.gfile.exists(summary_dir):
tf.io.gfile.mkdir(summary_dir)
train_summary_writer = None
eval_summary_writer = None
if eval_fn:
eval_summary_writer = tf.summary.create_file_writer(
os.path.join(summary_dir, "eval"))
if steps_per_loop >= _MIN_SUMMARY_STEPS:
# Only writes summary when the stats are collected sufficiently over
# enough steps.
train_summary_writer = tf.summary.create_file_writer(
os.path.join(summary_dir, "train"))
with strategy.scope():
model = model_fn()
if init_checkpoint:
logging.info("restore from %s", init_checkpoint)
if init_from_transformerxl:
checkpoint = tf.train.Checkpoint(
transformer_xl=model.transformerxl_model)
else:
checkpoint = tf.train.Checkpoint(model=model)
checkpoint.restore(init_checkpoint)
model.optimizer = optimizer
if not hasattr(model, "optimizer"):
raise ValueError("User should set optimizer attribute to model.")
train_loss_metric = tf.keras.metrics.Mean("training_loss", dtype=tf.float32)
train_metric = None
if metric_fn:
train_metric = metric_fn()
def _replicated_step(inputs, mem=None):
"""Replicated training step."""
inputs["mems"] = mem
with tf.GradientTape() as tape:
mem, logits = model(inputs, training=True)
loss = model.losses
train_loss_metric.update_state(loss)
if train_metric:
train_metric.update_state(inputs["label_ids"], logits)
scaled_loss = loss[0] * 1.0 / float(strategy.num_replicas_in_sync)
# Collects training variables.
tvars = model.trainable_variables
grads = tape.gradient(scaled_loss, tvars)
clipped, _ = tf.clip_by_global_norm(grads, clip_norm=1.0)
if input_meta_data["lr_layer_decay_rate"] != 1.0:
n_layer = 0
for i in range(len(clipped)):
m = re.search(r"model/transformer/layer_(\d+?)/", tvars[i].name)
if not m:
continue
n_layer = max(n_layer, int(m.group(1)) + 1)
for i in range(len(clipped)):
for l in range(n_layer):
if "model/transformer/layer_{}/".format(l) in tvars[i].name:
abs_rate = input_meta_data["lr_layer_decay_rate"]**(
n_layer - 1 - l)
clipped[i] *= abs_rate
logging.info("Apply mult {:.4f} to layer-{} grad of {}".format(
abs_rate, l, tvars[i].name))
break
optimizer.apply_gradients(zip(clipped, tvars))
if input_meta_data["mem_len"] > 0:
return mem
def train_steps(iterator, steps):
"""Performs distributed training steps in a loop.
Args:
iterator: the distributed iterator of training datasets.
steps: an tf.int32 integer tensor to specify number of steps to run
inside host training loop.
Raises:
ValueError: Any of the arguments or tensor shapes are invalid.
Returns:
logits: logits computed.
"""
if not isinstance(steps, tf.Tensor):
raise ValueError("steps should be an Tensor. Python object may cause "
"retracing.")
def cache_fn():
"""Initializes memory tensor used in XLNet pretraining."""
mems = []
if input_meta_data["mem_len"] > 0:
for _ in range(input_meta_data["n_layer"]):
zeros = tf.zeros([
input_meta_data["batch_size_per_core"],
input_meta_data["mem_len"],
input_meta_data["d_model"]
],
dtype=tf.float32)
mems.append(zeros)
return mems
if input_meta_data["mem_len"] > 0:
mem = strategy.run(cache_fn)
for _ in tf.range(steps):
mem = strategy.run(
_replicated_step, args=(
next(iterator),
mem,
))
else:
for _ in tf.range(steps):
strategy.run(_replicated_step, args=(next(iterator),))
if not run_eagerly:
train_steps = tf.function(train_steps)
logging.info("Start training...")
checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer)
latest_checkpoint_file = tf.train.latest_checkpoint(model_dir)
if latest_checkpoint_file:
logging.info("Checkpoint file %s found and restoring from checkpoint",
latest_checkpoint_file)
checkpoint.restore(latest_checkpoint_file)
logging.info("Loading from checkpoint file completed")
current_step = optimizer.iterations.numpy()
checkpoint_name = "xlnet_step_{step}.ckpt"
while current_step < total_training_steps:
train_loss_metric.reset_states()
if train_metric:
train_metric.reset_states()
steps = model_training_utils.steps_to_run(current_step, save_steps,
steps_per_loop)
train_steps(train_iterator, tf.convert_to_tensor(steps, dtype=tf.int32))
current_step += steps
train_loss = _float_metric_value(train_loss_metric)
log_stream = "Train step: %d/%d / lr = %.9f / loss = %.7f" % (
current_step, total_training_steps, learning_rate_fn(current_step),
train_loss)
if train_metric:
log_stream += " / %s = %f" % (train_metric.name,
_float_metric_value(train_metric))
logging.info(log_stream)
if train_summary_writer:
with train_summary_writer.as_default():
tf.summary.scalar(
"learning_rate",
learning_rate_fn(current_step),
step=current_step)
tf.summary.scalar(
train_loss_metric.name, train_loss, step=current_step)
if train_metric:
tf.summary.scalar(
train_metric.name,
_float_metric_value(train_metric),
step=current_step)
train_summary_writer.flush()
if model_dir and current_step % save_steps == 0:
_save_checkpoint(checkpoint, model_dir,
checkpoint_name.format(step=current_step))
if eval_fn and current_step % save_steps == 0:
logging.info("Running evaluation after step: %s.", current_step)
eval_fn(model, current_step, eval_summary_writer)
if model_dir:
_save_checkpoint(checkpoint, model_dir,
checkpoint_name.format(step=current_step))
if eval_fn:
logging.info("Running final evaluation after training is complete.")
eval_metric = eval_fn(model, current_step, eval_summary_writer)
training_summary = {
"total_training_steps": total_training_steps,
"train_loss": _float_metric_value(train_loss_metric),
}
if train_metric:
training_summary["last_train_metrics"] = _float_metric_value(train_metric)
if eval_fn:
# eval_metric is supposed to be a float.
training_summary["eval_metrics"] = eval_metric
model_training_utils.write_txt_summary(training_summary, summary_dir)
return model