The LAMBADA dataset: Word prediction requiring a broad discourse context https://arxiv.org/pdf/1606.06031.pdf
LAMBADA is a dataset to evaluate the capabilities of computational models for text understanding by means of a word prediction task. LAMBADA is a collection of narrative passages sharing the characteristic that human subjects are able to guess their last word if they are exposed to the whole passage, but not if they only see the last sentence preceding the target word. To succeed on LAMBADA, computational models cannot simply rely on local context, but must be able to keep track of information in the broader discourse.
Homepage: https://zenodo.org/record/2630551#.X4Xzn5NKjUI
@misc{ author={Paperno, Denis and Kruszewski, Germán and Lazaridou, Angeliki and Pham, Quan Ngoc and Bernardi, Raffaella and Pezzelle, Sandro and Baroni, Marco and Boleda, Gemma and Fernández, Raquel}, title={The LAMBADA dataset}, DOI={10.5281/zenodo.2630551}, publisher={Zenodo}, year={2016}, month={Aug} }
lambada_multilingual
: Evaluates alllambada_mt_X
tasks
lambada_mt_{en, fr, de, it, es}
: Machine-translated versions of OpenAI's Lambada variant.
- Is the task an existing benchmark in the literature?
- Have you referenced the original paper that introduced the task?
- If yes, does the original paper provide a reference implementation? If so, have you checked against the reference implementation and documented how to run such a test? (This task is novel to the Evaluation Harness, and has been checked against v0.3.0 of the harness.)
If other tasks on this dataset are already supported:
- Is the "Main" variant of this task clearly denoted?
- Have you provided a short sentence in a README on what each new variant adds / evaluates?
- Have you noted which, if any, published evaluation setups are matched by this variant?