-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathAnnotatedEquivalentMisc.v
62 lines (54 loc) · 1.71 KB
/
AnnotatedEquivalentMisc.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
Require Import Coq.Lists.List.
Require Export SystemFR.AnnotatedTactics.
Require Export SystemFR.Judgments.
Require Export SystemFR.ErasedEquivalent.
Require Export SystemFR.TermListReducible.
Opaque reducible_values.
Lemma annotated_equivalent_weaken:
forall Θ Γ x T u v,
~(x ∈ support Γ) ->
subset (fv u) (support Γ) ->
subset (fv v) (support Γ) ->
[[ Θ; Γ ⊨ u ≡ v ]] ->
[[ Θ; (x,T) :: Γ ⊨ u ≡ v ]].
Proof.
unfold open_equivalent; steps.
apply equivalent_weaken with ρ (erase_context Γ) x (erase_type T);
repeat step;
side_conditions.
Qed.
Lemma annotated_equivalent_type:
forall Θ Γ p t1 t2,
[[ Θ; Γ ⊨ p : T_equiv t1 t2 ]] ->
[[ Θ; Γ ⊨ t1 ≡ t2 ]].
Proof.
unfold open_reducible, reduces_to, open_equivalent;
repeat step || t_instantiate_sat3 || simp_red.
Qed.
Lemma annotated_equivalent_weaken_hyp:
forall Θ Γ1 Γ2 x T T' u v,
~(x ∈ support Γ2) ->
subset (fv T) (support Γ2) ->
subset (fv T') (support Γ2) ->
NoDup (support Γ1 ++ x :: support Γ2) ->
[[ Θ; Γ2 ⊨ T <: T' ]] ->
[[ Θ; Γ1 ++ (x, T') :: Γ2 ⊨ u ≡ v ]] ->
[[ Θ; Γ1 ++ (x, T) :: Γ2 ⊨ u ≡ v ]].
Proof.
unfold open_equivalent, open_subtype; intros.
eapply_any; eauto; repeat step || rewrite erase_context_append in *.
apply satisfies_weaken with (erase_type T); eauto;
repeat step || rewrite support_append;
side_conditions;
eauto.
Qed.
Lemma annotated_equivalent_error:
forall Θ Γ e T1 T2,
[[ Θ; Γ ⊨ e : T1 ]] ->
[[ Θ; Γ ⊨ err T2 ≡ e ]] ->
[[ Θ; Γ ⊨ ttrue ≡ tfalse ]].
Proof.
unfold open_equivalent;
repeat step || t_instantiate_sat3;
eauto using equivalent_error with exfalso.
Qed.