-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathnorm_ratio_experiments.py
43 lines (34 loc) · 1.66 KB
/
norm_ratio_experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
"""
Script used to explore the behavior of the ratio of the L1 norm by the L2 norm of
the memory of the optimizer.
"""
from main import construct_and_train
from utils.hyperparameters import get_experiment_hyperparameters, get_experiment_name
from tune_lr import get_tuned_learning_rate
base_folder = 'norm_ratio_experiments/'
def run_experiment(model, dataset, optimizer, prefix='', batch_size=128):
base_name = base_folder + 'batchsize-' + str(batch_size) + '/' \
+ prefix + get_experiment_name(model, dataset, optimizer)
hyperparameters = get_experiment_hyperparameters(model, dataset, optimizer)
momentum = hyperparameters['momentum']
weight_decay = hyperparameters['weight_decay']
comp = hyperparameters['comp']
noscale = hyperparameters['noscale']
memory = hyperparameters['memory']
mnorm = hyperparameters['mnorm']
mback = hyperparameters['mback']
norm_ratio = True
num_epochs = [100, 50, 50]
resume = False
name = base_name + '/'
lr = get_tuned_learning_rate(model, dataset, optimizer) * batch_size / 128
print('Tuned lr : {}'.format(lr))
for epochs in num_epochs:
construct_and_train(name=name, dataset=dataset, model=model, resume=resume, epochs=epochs,
lr=lr, batch_size=batch_size, momentum=momentum, weight_decay=weight_decay,
comp=comp, noscale=noscale, memory=memory, mnorm=mnorm, mback=mback, norm_ratio=norm_ratio)
resume = True
lr /= 10
if __name__ == '__main__':
run_experiment('vgg', 'cifar10', 'ssgdf', batch_size=32, prefix='2')
# run_experiment('resnet', 'cifar100', 'ssgdf', batch_size=32, prefix='3')