-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmightymosaic.py
273 lines (244 loc) · 14.8 KB
/
mightymosaic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# -*- coding: utf-8 -*-
"""MightyMosaic.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/18hy9Oh_2sgJySaxfuWUM5vm08YQRyby3
"""
import numpy as np
import tqdm.auto as tqdm
import math
OVERLAP_FACTOR = 1
FILL_MODE = 'constant'
CVAL = 0
ALLOWED_FILL_MODE = ('constant', 'nearest', 'reflect')
class MightyMosaic(np.ndarray):
def __new__(cls, shape, tile_shape, overlap_factor=OVERLAP_FACTOR, fill_mode=FILL_MODE, cval=CVAL):
"""
Create a MightyMosaic instance
:param shape: Number of tiles on each axis of the mosaic. If of length 3, also describe the number of channels.
:type shape: `list` or `tuple`, should be either of length `2` or `3`.
:param tile_shape: Number of pixels on each axis of the tile.
:type tile_shape: `list` or `tuple`, should be of length `2`.
:param overlap_factor: Overlapping of neighbor tiles. If iterable, the overlap can be different on the two axis.
:type overlap_factor: `int`, `list` or `tuple`. If iterable, should be of length 2.
:param fill_mode: Points outside the boundaries of the input are filled according to the given mode:
`constant`: kkkkkkkk|abcd|kkkkkkkk (cval=k)
`nearest`: aaaaaaaa|abcd|dddddddd
`reflect`: abcddcba|abcd|dcbaabcd
:type fill_mode: `str`, one of `constant`, `nearest` or `reflect`. Optional.
:param cval: Value used for points outside the boundaries when fill_mode = `constant`.
:type cval: `int`. Optional.
:return: A subclass of `np.ndarray`, with shape of length either `4` or `5`.
:rtype: `MightyMosaic`
"""
assert isinstance(shape, tuple) or isinstance(shape, list), \
f'shape {shape} should be of either a "tuple" or a "list" but is is of type "{type(shape)}"'
assert len(shape) in (2, 3), \
f'shape {shape} is incorrect (length is {len(shape)} but should be either 2 or 3).'
assert isinstance(tile_shape, tuple) or isinstance(tile_shape, list), \
f'shape {tile_shape} should be of either a "tuple" or a "list" but is is of type "{type(tile_shape)}"'
assert len(tile_shape) == 2, \
f'tile_shape {tile_shape} is incorrect (length is {len(tile_shape)} but should be 2.'
assert type(overlap_factor) in (int, tuple, list), \
f'overlap_factor should be an int or a tuple/list but is {overlap_factor} of type "{type(overlap_factor)}"'
if isinstance(overlap_factor, int):
overlap_factor = (overlap_factor, overlap_factor)
assert len(overlap_factor) == 2, \
f'When a list, overlap_factor should have a length of 2, ' \
f'but is {overlap_factor} with a length of {len(overlap_factor)}'
assert tile_shape[0] / overlap_factor[0] == tile_shape[0] // overlap_factor[0], \
f"The first dimension of the tile_shape {tile_shape} cannot be divided " \
f"by the overlap_factor {overlap_factor[0]}"
assert tile_shape[1] / overlap_factor[1] == tile_shape[1] // overlap_factor[1], \
f"The second dimension of the tile_shape {tile_shape} cannot be divided " \
f"by the overlap_factor {overlap_factor[1]}"
nb_channels = shape[-1] if len(shape) == 3 else None
mosaic_margins = -shape[0] % tile_shape[0], -shape[1] % tile_shape[1]
tile_margins = (int((0.5 - 0.5 / overlap_factor[0]) * tile_shape[0]),
int((0.5 - 0.5 / overlap_factor[1]) * tile_shape[1]))
tile_center_dims = tile_shape[0] - 2 * tile_margins[0], tile_shape[1] - 2 * tile_margins[1]
mosaic_shape = [math.ceil((shape[0] + mosaic_margins[0]) / tile_center_dims[0]),
math.ceil((shape[1] + mosaic_margins[1]) / tile_center_dims[1]),
tile_shape[0],
tile_shape[1]]
if nb_channels:
mosaic_shape.append(nb_channels)
array = super().__new__(cls, mosaic_shape, float, None, 0, None, None)
# array = np.zeros(mosaic_shape)
array.mosaic_margins = mosaic_margins
array.tile_margins = tile_margins
array.tile_center_dims = tile_center_dims
array.overlap_factor = overlap_factor
array.fill_mode = fill_mode
array.cval = cval
array.original_shape = shape
return array
def apply(self, function, progress_bar=False, batch_size=1):
"""
Apply a function on each tile. Progress by batching the tiles.
:param function: The function to apply on each batchs of tile.
:type function: callable.
:param progress_bar: choose if a progress_bar should be used.
:type progress_bar: `bool`. Optional, default value is `False`.
:param batch_size: Number of batchs to pass inside the function.
:type batch_size: `int`. Optional, default value is `1`.
:return: A subclass of `np.ndarray`, with shape of length either `4` or `5`.
:rtype: `MightyMosaic`.
"""
assert isinstance(progress_bar, bool), \
f'cval {progress_bar} should be of type "bool" but is is of type "{type(progress_bar)}"'
assert callable(function), f'function should be callable but is of type {type(function)}'
assert isinstance(batch_size, int), f'batch_size should be of type "int" but is of type "{type(batch_size)}"'
assert self.shape[0] * self.shape[1] / batch_size == self.shape[0] * self.shape[1] // batch_size, \
f'You have {self.shape[0] * self.shape[1]} tiles but a batch_size of {batch_size}.' \
f'Please select a batch_size that divide the number of tiles'
index = [(i, j) for i in range(self.shape[0]) for j in range(self.shape[1])]
batch_indexes = range(math.ceil(len(index) / batch_size))
if progress_bar:
batch_indexes = tqdm.tqdm(batch_indexes)
patchs = []
for batch_index in batch_indexes:
min_index = batch_index * batch_size
max_index = min(min_index + batch_size, len(index) + 1)
batch = np.array([self[i, j] for i, j in index[min_index:max_index]])
batch = function(batch)
for element_index, (i, j) in enumerate(index[min_index:max_index]):
patchs.append((i, j, batch[element_index]))
new_shape = [self.original_shape[0] // (self.shape[2] // patchs[0][2].shape[0]),
self.original_shape[1] // (self.shape[3] // patchs[0][2].shape[1])]
if len(patchs[0][2].shape) == 3:
new_shape.append(patchs[0][2].shape[-1])
new_mosaic = MightyMosaic(new_shape, patchs[0][2].shape[:2],
overlap_factor=self.overlap_factor, fill_mode=self.fill_mode, cval=self.cval)
for i, j, patch in patchs:
new_mosaic[i, j] = patch
return new_mosaic
def get_fusion(self):
"""
Fuse the mosaic.
:return: The fusion of each tile, with respect to the central part defined but the overlapping factor.
:rtype: `np.ndarray`
"""
shape = [self.shape[0] * self.tile_center_dims[0],
self.shape[1] * self.tile_center_dims[1]]
if len(self.shape) == 5:
shape.append(self.shape[-1])
array = np.zeros(shape)
for i, j in [(i, j) for i in range(self.shape[0]) for j in range(self.shape[1])]:
i_begin = i * self.tile_center_dims[0]
i_end = i_begin + self.tile_center_dims[0]
j_begin = j * self.tile_center_dims[1]
j_end = j_begin + self.tile_center_dims[1]
array[i_begin:i_end, j_begin:j_end] = self[i, j,
self.tile_margins[0]: self.tile_margins[0] + self.tile_center_dims[0],
self.tile_margins[1]: self.tile_margins[1] + self.tile_center_dims[1]]
array = array[:array.shape[0] - self.mosaic_margins[0], :array.shape[1] - self.mosaic_margins[1]]
return array
def __copy__(self):
new_mosaic = from_array(self, (self.shape[2], self.shape[3]), overlap_factor=self.overlap_factor,
fill_mode=self.fill_mode, cval=self.cval)
return new_mosaic
def from_array(array, tile_shape, overlap_factor=OVERLAP_FACTOR,
fill_mode=FILL_MODE, cval=CVAL):
"""
Create a instance of `MightyMosaic` from a `np.ndarray`
:param array: The array on which to apply the tiling.
:type array: `np.ndarray`, it's shape should be of length either `2` or `3`.
:param tile_shape: Number of pixels on each axis of the tile.
:type tile_shape: `list` or `tuple`, should be of length `2`.
:param overlap_factor: Overlapping of neighbor tiles. If iterable, the overlap can be different on the two axis.
:type overlap_factor: `int`, `list` or `tuple`. If iterable, should be of length 2.
:param fill_mode: Points outside the boundaries of the input are filled according to the given mode:
`constant`: kkkkkkkk|abcd|kkkkkkkk (cval=k)
`nearest`: aaaaaaaa|abcd|dddddddd
`reflect`: abcddcba|abcd|dcbaabcd
:type fill_mode: `str`, one of `constant`, `nearest` or `reflect`. Optional.
:param cval: Value used for points outside the boundaries when fill_mode = `constant`.
:type cval: `int`. Optional.
:return: A subclass of `np.ndarray`, with shape of length either `4` or `5`.
:rtype: `MightyMosaic`
"""
assert isinstance(array, np.ndarray), f'array should be of type "np.ndarray" but is of type "{type(array)}"'
assert len(array.shape) in (2, 3), \
f'Array has incorrect shape {array.shape} is incorrect ' \
f'(length is {len(array.shape)} but should be either 2 or 3).'
mosaic = MightyMosaic(array.shape, tile_shape, overlap_factor=overlap_factor, fill_mode=fill_mode, cval=cval)
if len(array.shape) == 2:
new_array = np.zeros((array.shape[0] + mosaic.mosaic_margins[0] + 2 * mosaic.tile_margins[0],
array.shape[1] + mosaic.mosaic_margins[1] + 2 * mosaic.tile_margins[1]))
else:
new_array = np.zeros((array.shape[0] + mosaic.mosaic_margins[0] + 2 * mosaic.tile_margins[0],
array.shape[1] + mosaic.mosaic_margins[1] + 2 * mosaic.tile_margins[1],
array.shape[2]))
new_array[mosaic.tile_margins[0]:array.shape[0] + mosaic.tile_margins[0],
mosaic.tile_margins[1]:array.shape[1] + mosaic.tile_margins[1]] = array
new_array = fill(new_array, fill_mode, cval=cval,
i_begin=mosaic.tile_margins[0], i_end=-mosaic.tile_margins[0] - mosaic.mosaic_margins[0],
j_begin=mosaic.tile_margins[1], j_end=-mosaic.tile_margins[1] - mosaic.mosaic_margins[1]
)
for i, j in [(i, j) for i in range(mosaic.shape[0]) for j in range(mosaic.shape[1])]:
i_begin = i * mosaic.shape[2] // mosaic.overlap_factor[0]
j_begin = j * mosaic.shape[3] // mosaic.overlap_factor[1]
mosaic[i][j] = new_array[i_begin:i_begin + mosaic.shape[2], j_begin:j_begin + mosaic.shape[3]]
return mosaic
def fill(array, fill_mode, cval=CVAL, i_begin=0, i_end=-1, j_begin=0, j_end=-1):
"""
Fill an array on the given indexes with respect to the `fill_mode`.
:param array: Array to fill.
:type array: `np.ndarray`.
:param fill_mode: Points outside the boundaries of the input are filled according to the given mode:
`constant`: kkkkkkkk|abcd|kkkkkkkk (cval=k)
`nearest`: aaaaaaaa|abcd|dddddddd
`reflect`: abcddcba|abcd|dcbaabcd
:type fill_mode: `str`, one of `constant`, `nearest` or `reflect`. Optional.
:param cval: Value used for points outside the boundaries when fill_mode = `constant`.
:type cval: `int`. Optional.
:param i_begin: Index, on the first axis, of the real begin of the array. Index below are filled.
:type i_begin: `int`. Optional, default value is `0`.
:param i_end: Index, on the first axis, of the real end of the array. Index above are filled.
:type i_end: `int`. Optional, default value is `-1`.
:param j_begin: Index, on the second axis, of the real begin of the array. Index below are filled.
:type j_begin: `int`. Optional, default value is `0`.
:param j_end: Index, on the second axis, of the real end of the array. Index above are filled.
:type j_end: `int`. Optional, default value is `-1`.
:return:
"""
assert fill_mode in ALLOWED_FILL_MODE, \
f'fill_mode {fill_mode} is not allowed, should be one of {ALLOWED_FILL_MODE}'
assert isinstance(cval, int), f'cval {cval} should be of type "int" but is of type "{type(cval)}"'
assert isinstance(i_begin, int), f'i_begin {i_begin} should be of type but is of type "{type(i_begin)}"'
assert isinstance(i_end, int), f'i_end {i_end} should be of type but is of type "{type(i_end)}"'
assert isinstance(j_begin, int), f'j_begin {j_begin} should be of type but is of type "{type(j_begin)}"'
assert isinstance(j_end, int), f'j_end {j_end} should be of type but is of type "{type(j_end)}"'
assert i_begin % array.shape[0] < i_end % array.shape[0], \
f"i_begin ({i_begin}) should be less than i_end ({i_end}) ({i_begin} < {i_end} is False)"
assert j_begin % array.shape[1] < j_end % array.shape[1], \
f"j_begin ({j_begin}) should be less than j_end ({j_end}) ({j_begin} < {j_end} is False)"
assert -array.shape[0] < i_begin < array.shape[0], \
f"i_begin {i_begin} is out of range (should be in ]-{array.shape[0]}, {array.shape[0]}[)"
assert -array.shape[0] < i_end < array.shape[0], \
f"i_end {i_end} is out of range (should be in ]-{array.shape[0]}, {array.shape[0]}[)"
assert -array.shape[1] < j_begin < array.shape[1], \
f"j_begin {j_begin} is out of range (should be in ]-{array.shape[1]}, {array.shape[1]}[)"
assert -array.shape[1] < j_end < array.shape[1], \
f"j_end {j_end} is out of range (should be in ]-{array.shape[1]}, {array.shape[1]}[)"
if i_end > 0:
i_end -= array.shape[0]
if j_end > 0:
j_end -= array.shape[1]
if fill_mode == 'constant':
array[:i_begin] = cval
array[i_end:] = cval
array[:, :j_begin] = cval
array[:, j_end:] = cval
if fill_mode == 'nearest':
array[:i_begin] = array[i_begin + 1]
array[i_end:] = array[i_end - 1]
array[:, :j_begin] = array[:, j_begin + 1]
array[:, j_end:] = array[:, j_end - 1]
if fill_mode == 'reflect':
array[:i_begin] = array[2 * i_begin:i_begin:-1]
array[i_end:] = array[i_end:2 * i_end:-1]
array[:, :j_begin] = array[:, 2 * j_begin:j_begin:-1]
array[:, j_end:] = array[:, j_end:2 * j_end:-1]
return array