-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathGARCH.R
137 lines (121 loc) · 4.53 KB
/
GARCH.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
rm(list=ls())
library(lubridate)
setwd('/Users/Eric/Documents/Vol_prediction')
SPXdata<- read.csv('SPX_rvol.csv')
rownames(SPXdata)<- ymd( SPXdata$DATE)
SPXdata$SPX2.rvol<- sqrt(SPXdata$SPX2.rv)
## preliminary analysis for SPX2.rv
acf(SPXdata$SPX2.rvol)
acf(SPXdata$SPX2.r)
library(tseries)
adf.test(SPXdata$SPX2.rvol)
kpss.test(SPXdata$SPX2.rvol, null = 'Level')
# ADF and KPSS test get both rejected. It is a flag of LRD.
plot(SPXdata$DATE, SPXdata$SPX2.rvol, type = 'n')
lines( SPXdata$DATE, SPXdata$SPX2.rvol)
## Fact:
## 1. SPX2.r shows week auto corr and SPX2.rv shows strong LRD
## 2. SPX2.r accepts the hypo of stationary
Box.test(SPXdata$SPX2.r, lag =1 , type= 'Ljung-Box')
shapiro.test(SPXdata$SPX2.r)
plot(density(SPXdata$SPX2.r))
library(moments)
kurtosis(SPXdata$SPX2.r)
## model SPX2.r by t dist
library(MASS)
t.pars<-fitdistr(SPXdata$SPX2.r, densfun = 't', start= list(m=0,s= 0.01 ,df= 1))
plot(density(SPXdata$SPX2.r), xlim= c(-.1,.1), ylim=c(-1, 55) )
par(new=TRUE)
curve( dt( (x- t.pars$estimate[1])/t.pars$estimate[2],
df= t.pars$estimate[3])/ t.pars$estimate[2],
from= -.1,
to= .1, xlim= c(-.1,.1),
ylim=c (-1, 55),
col= 'green')
library(forecast)
auto.arima(SPXdata$SPX2.r)
## auto.arima indicates ARMA(2,0) model for SPX2.r
## So apply standard ARMA(2,0)-GARCH(1,1) model for SPX2.r
library(rugarch)
sgarch<- ugarchspec(mean.model = list( armaOrder= c(2,0),
include.mean= TRUE),
distribution.model = 'std')
sgarch_fitted<- ugarchfit(sgarch, data = SPXdata$SPX2.r)
whole_len<- length( SPXdata$SPX2.r)
burning_len<- 1000
forecast_len<- whole_len- burning_len
ret<- data.frame(SPX2.r= SPXdata$SPX2.r)
rownames(ret)<- rownames(SPXdata)
# rolling estimation and forecasting
sgarch_roll<- ugarchroll(spec = sgarch,
data= ret,
n.ahead = 1,
forecast.length =forecast_len,
refit.every = 5)
## plot the predicted vol and realized vol(5-min estimator by OxManLab)
library(ggplot2)
library(reshape2)
x<- tail( ymd( SPXdata$DATE), forecast_len)
realized_vol<- sqrt(tail( SPXdata$SPX2.rv, forecast_len))
sgarch.predicted_vol<- sgarch_roll@forecast$density[,'Sigma']
tmp_df<- data.frame(x, realized_vol, sgarch.predicted_vol)
sgarch.g<- ggplot(melt(tmp_df, id.var= 'x'), aes(x=x, y= value))+
geom_line(aes(colour= variable, group= variable))+
scale_color_manual(values = c('grey', 'red'))+
ylab('daily volatility')+
xlab('date index')+
theme(legend.title= element_blank())+
ggtitle('ARMA(2,0)-GARCH(1,1) vol prediction')
jpeg('ARMAGARCH.jpeg')
sgarch.g
dev.off()
## compute the squared error
sgarch.MSE<- mean(( realized_vol- sgarch.predicted_vol)^2)
summary( (realized_vol-sgarch.predicted_vol)^2)
sgarch.MSE
cor( realized_vol, sgarch.predicted_vol)
summary( lm( realized_vol~ sgarch.predicted_vol))
## save sgarch model
sgarch_model<- list()
sgarch_model$spec<- sgarch
sgarch_model$roll<- sgarch_roll
sgarch_model$plot<- sgarch.g
sgarch_model$MSE<- sgarch.MSE
sgarch_model$roll.pred<- tmp_df
save(sgarch_model, file = 'sgarch_model')
## EGARCH estimation
egarch<- ugarchspec(variance.model = list( model='eGARCH'),
mean.model = list( armaOrder= c(2,0)),
distribution.model = 'std')
egarch_fitted<- ugarchfit(egarch, data= SPXdata$SPX2.r)
egarch_roll<- ugarchroll( spec = egarch,
data= ret,
n.ahead = 1,
forecast.length = forecast_len,
refit.every = 5)
x<- tail( ymd( SPXdata$DATE), forecast_len)
realized_vol<- sqrt(tail( SPXdata$SPX2.rv, forecast_len))
egarch.predicted_vol<- egarch_roll@forecast$density[,'Sigma']
tmp_df<- data.frame(x, realized_vol, egarch.predicted_vol)
egarch.g<- ggplot(melt(tmp_df, id.var= 'x'), aes(x=x, y= value))+
geom_line(aes(colour= variable, group= variable))+
scale_color_manual(values = c('grey', 'blue'))+
ylab('daily volatility')+
xlab('date index')+
theme(legend.title= element_blank())+
ggtitle('ARMA(2,0)-EGARCH(1,1) vol prediction')
jpeg('ARMAEGARCH.jpeg')
egarch.g
dev.off()
egarch.MSE<- mean(( realized_vol- egarch.predicted_vol)^2)
summary( (realized_vol-egarch.predicted_vol)^2)
egarch.MSE
cor( realized_vol, egarch.predicted_vol)
summary( lm( realized_vol~ egarch.predicted_vol))
egarch_model<- list()
egarch_model$spec<- egarch
egarch_model$roll<- egarch_roll
egarch_model$plot<- egarch.g
egarch_model$MSE<- egarch.MSE
egarch_model$roll.pred<- tmp_df
save(egarch_model, file= 'egarch_model')