-
-
Notifications
You must be signed in to change notification settings - Fork 310
/
Copy pathtools.py
71 lines (58 loc) · 2.38 KB
/
tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
from __future__ import print_function
from lib.cfgs import c as dcfgs
import lib.cfgs as cfgs
import os
os.environ['JOBLIB_TEMP_FOLDER']=dcfgs.shm
import argparse
os.environ['GLOG_minloglevel'] = '3'
import os.path as osp
import pickle
import sys
from multiprocessing import Process, Queue
import matplotlib.pyplot as plt
import numpy as np
from IPython import embed
from lib.net import Net, load_layer, caffe_test
sys.path.insert(0, osp.dirname(__file__)+'/lib')
def parse_args():
parser = argparse.ArgumentParser("experiment")
parser.add_argument('task', choices=['flop', 'param', 'resnet'], help='task')
parser.add_argument('-model', dest='model', help='model dir', default="", type=str)
parser.add_argument('-weights', dest='weights', help='weights dir', default="", type=str)
parser.add_argument('-setting', dest='setting', help='vgg xception resnet', default="vgg", type=str)
parser.add_argument('-tf', dest='tf_vis', help='tf devices', default=None, type=str)
parser.add_argument('-caffe', dest='caffe_vis', help='caffe devices', default=None, type=str)
parser.add_argument('-preflop', dest='preflop', help='original flop', default=0, type=int)
args = parser.parse_args()
return args
def param(model, weights):
pass
def flop(model, weights, orig=15346630656):
setting = getattr(cfgs, args.setting)
if model == '':
model = setting.model
if weights == '':
weights = setting.weights
orig = setting.flop
print('orig', orig)
net = Net(model, model=weights, noTF=1)
after = net.computation()
print(after * 100 / orig)
def resnet(model='/home/heyihui/ceph/resnet-imagenet-caffe/resnet_50/ResNet-50-test.prototxt',
weights='/home/heyihui/ceph/resnet-imagenet-caffe/resnet_50/ResNet-50-model.caffemodel'):
net = Net(model, model=weights, noTF=1)
after = net.rescomputation()
if __name__ == '__main__':
args = parse_args()
if args.tf_vis is not None: cfgs.tf_vis = args.tf_vis
if args.caffe_vis is not None: cfgs.caffe_vis = args.caffe_vis
kwargs = {}
if args.preflop is not None:
kwargs['orig'] = args.preflop
method_name = args.task
possibles = globals().copy()
possibles.update(locals())
method = possibles.get(method_name)
if not method:
raise NotImplementedError("Method %s not implemented" % method_name)
method(args.model, args.weights, **kwargs)