forked from Markus-Goetz/block-prediction
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
executable file
·130 lines (103 loc) · 4.21 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import argparse
from email.policy import default
import pickle
import h5py
import os
from tensorflow.keras import optimizers
from tensorflow.keras.callbacks import ModelCheckpoint
from tensorflow.keras.layers import (Activation, add, Conv2D, Dense, Dropout, Flatten, Input, ZeroPadding2D)
from tensorflow.keras.layers import BatchNormalization
from tensorflow.keras.models import load_model, Model
from tensorflow.keras.regularizers import l2
from tensorflow.keras.utils import plot_model
import numpy as np
def positive_int(value):
try:
parsed = int(value)
if not parsed > 0:
raise ValueError()
return parsed
except ValueError:
raise argparse.ArgumentTypeError('value must be an positive integer')
def parse_cli():
parser = argparse.ArgumentParser()
parser.add_argument(
'-e', '--epochs',
nargs='?',
type=positive_int,
action='store',
default=2,
help='number of training epochs'
)
parser.add_argument(
'-t', '--train',
metavar='TRAIN',
type=str,
dest='train',
default='./artificial.h5',
help='path to the HDF5 file with the training data'
)
parser.add_argument(
'-m', '--model',
metavar='MODEL',
type=str,
dest='model',
default='./latest_model.keras',
help='path where to store the model'
)
parser.add_argument(
'-s', '--saveflag',
metavar='SAVEFLAG',
type=bool,
dest='save_flag',
default=True,
help='Flag to determine whether to enable checkpointing and writing to disk'
)
return parser.parse_args()
def load_data(path):
with h5py.File(path, 'r') as handle:
data = np.array(handle['diagonalset'])
labels = np.array(handle['vectorset'])
return data, labels
def preprocess(data, labels):
# simply add an additional dimension for the channels for data
# swap axis of the label set
return np.expand_dims(data, axis=3), np.moveaxis(labels, 0, -1)
def build_model(input_shape):
input_img = Input(shape=input_shape)
# first bottleneck unit
bn_1 = BatchNormalization()(input_img)
activation_1 = Activation('selu')(bn_1)
conv_1 = Conv2D(32, kernel_size=(5, 5,), padding='same', kernel_regularizer=l2(0.02))(activation_1)
bn_2 = BatchNormalization()(conv_1)
activation_2 = Activation('selu')(bn_2)
conv_2 = Conv2D(128, kernel_size=(3, 3,), padding='same', kernel_regularizer=l2(0.02))(activation_2)
merged = add([input_img, conv_2])
# corner detection
bn_3 = BatchNormalization()(merged)
padding = ZeroPadding2D(padding=(0, 3))(bn_3)
conv_3 = Conv2D( 32, kernel_size=(21, 7,), padding='valid', activation='tanh')(padding)
conv_4 = Conv2D(128, kernel_size=( 1, 3,), padding='same', activation='tanh')(conv_3)
# fully-connected predictor
flat = Flatten()(conv_4)
classify = Dense(512, activation='sigmoid')(flat)
dropout = Dropout(0.1)(classify)
result = Dense(input_shape[1], activation='sigmoid')(dropout)
model = Model(inputs=input_img, outputs=result)
model.compile(optimizer=optimizers.Nadam(learning_rate=1e-4), loss='binary_crossentropy', metrics=['accuracy'])
return model
def train_network(model, data, labels, model_file, epochs, save_flag):
#plot_model(model, to_file='{}.png'.format(model_file), show_shapes=True)
if (save_flag):
checkpoint = ModelCheckpoint(model_file, monitor='val_loss', verbose=True, save_best_only=True, save_weights_only=False, mode='auto')
training = model.fit(data, labels, epochs=epochs, batch_size=8, validation_split=1.0/5.0, class_weight={0: 0.1, 1: 0.9}, callbacks=[checkpoint])
else:
training = model.fit(data, labels, epochs=epochs, batch_size=8, validation_split=1.0/5.0, class_weight={0: 0.1, 1: 0.9})
if (save_flag):
with open('{}.history'.format(model_file), 'wb') as handle:
pickle.dump(training.history, handle)
if __name__ == '__main__':
arguments = parse_cli()
data, labels = preprocess(*load_data(arguments.train))
model = build_model(input_shape=data.shape[1:])
train_network(model, data, labels, arguments.model, arguments.epochs, arguments.save_flag)