-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlab3_graph.py
82 lines (69 loc) · 2.89 KB
/
lab3_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import pandas as pd
import matplotlib.pyplot as plt
import csv
low_cutoff = 300
x_offset = 1
y_offset = 10
percent_offset = 1.05
peak_vals = []
csv_file_dict = {"30 90 .03ss 30tps Al Foil.csv":"Aluminum Foil",
"30 90 .03ss 30tps Mortan Salt Grinded.csv":"Grinded Morton Salt",
"30 90 .03ss 30tps Mortan Salt Grinded+Al powder.csv":"Powder Salt and Al",
"30 90 .03ss 30tps Mortan Salt.csv":"Morton Salt"}
csv_file_list, csv_file_names = [], []
[csv_file_list.append(key) for key in csv_file_dict.keys()]
[csv_file_names.append(value for value in csv_file_dict.values())]
#skiprows=1 will skip first line and try to read from second line
csv_graph_dict = {}
dfa = pd.read_csv("al.csv")
dfb = pd.read_csv("nacl.csv")
for csv_file in csv_file_list:
df = pd.read_csv(csv_file, skiprows=26)
peaks = df["Intensity"][(df["Intensity"].shift(1) < df["Intensity"]) & (df["Intensity"].shift(-1) < df["Intensity"]) & (df["Intensity"] > low_cutoff)]
df.insert(1,'Peaks',peaks)
temp_list =
peak_vals.append(temp_list)
csv_graph_dict[csv_file_dict[csv_file]] = df
#print the data framep
fig, axs = plt.subplots(4)
for index,key in enumerate(csv_graph_dict.keys()):
print(key)
df = csv_graph_dict[key]
ax = df.plot(label=key,x="Angle",y="Intensity")
df.plot.scatter(ax=ax,label="Peaks",x="Angle",y="Peaks",c="orange")
if key is "Grinded Morton Salt" or key is "Morton Salt" or key is "Powder Salt and Al":
for item in dfb["angle"]:
ax.axvline(item,linestyle="--",c="green")
for index,row in dfb.iterrows():
ax.annotate("{}".format(row["hkl"]),(row["angle"] + x_offset,2000),rotation=45)
if key is "Aluminum Foil" or key is "Powder Salt and Al":
for item in dfa["angle"]:
ax.axvline(item,linestyle="--",c="red")
for index,row in dfa.iterrows():
# print(row["hkl"])
ax.annotate("{}".format(row["hkl"]),(row["angle"],2000),rotation=45)
new_df = df
new_df.dropna(subset=["Peaks"], inplace=True)
last_row = 0
new_df["Angle"] = new_df["Angle"].round(2)
x_tick_list = []
for index, row in new_df.iterrows():
try:
# print(last_row)
if row["Angle"] > percent_offset*last_row or last_row == 0:
x_tick_list.append(row["Angle"])
# ax.annotate("{0:.2f}".format(row["Angle"]),(row["Angle"] + x_offset,row["Peaks"]+y_offset),rotation=45)
except:
pass
last_row = row["Angle"]
ax.set_xticks(x_tick_list)
ax.set_xticklabels(x_tick_list,rotation=45)
fig = plt.gcf()
fig.savefig("{}.png".format(key),dpi=1000)
# for item in peak_vals:
# print(item)
# item.write_csv("peak_output.csv",mode='a')
with open("peak_output",'a') as csvfile:
spamwriter = csv.writer(csvfile)
for items in peak_vals:
spamwriter.writerow(items)