-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathImagePairs.py
executable file
·191 lines (158 loc) · 9.58 KB
/
ImagePairs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import csv
import torch
import os
from torch.utils.data import DataLoader, Subset
import training.TrainingOptions
import training.AdversarialTraining
import Utils
from datasets.GeneratorInputDataset import GeneratorInputDataset
from datasets.InfiniteDataSampler import InfiniteDataSampler
from datasets.TransformDataSampler import TransformDataSampler
from datasets.image2image import get_aligned_dataset
from eval import LS
from eval.Visualisation import generate_images
from models.generators.ConvGenerator import ConvGenerator
from training.DiscriminatorTraining import DiscriminatorSetup, DependencyDiscriminatorSetup, DependencyDiscriminatorPair
from models.discriminators.ConvDiscriminator import ConvDiscriminator
from datasets.CropDataset import CropDataset
def set_paths(opt):
# Set up paths and create folders
opt.experiment_path = os.path.join(opt.out_path, "ImagePairs", opt.dataset, opt.experiment_name)
opt.gen_path = os.path.join(opt.experiment_path, "gen")
opt.log_path = os.path.join(opt.experiment_path, "logs")
Utils.make_dirs([opt.experiment_path, opt.gen_path, opt.log_path])
def train(opt):
Utils.set_seeds(opt)
device = Utils.get_device(opt.cuda)
set_paths(opt)
# DATA
dataset = get_aligned_dataset(opt, "train")
nc = dataset.A_nc + dataset.B_nc
# Warning if desired number of joint samples is larger than dataset, in that case, use whole dataset as paired
if opt.num_joint_samples > len(dataset):
print("WARNING: Cannot train with " + str(opt.num_joint_samples) + " samples, dataset has only size of " + str(len(dataset))+ ". Using full dataset!")
opt.num_joint_samples = len(dataset)
# Joint samples
dataset_train = Subset(dataset, range(opt.num_joint_samples))
train_joint = InfiniteDataSampler(
DataLoader(dataset_train, num_workers=int(opt.workers), batch_size=opt.batchSize, shuffle=True, drop_last=True))
if opt.factorGAN == 1:
# For marginals, take full dataset and crop
train_a = InfiniteDataSampler(DataLoader(CropDataset(dataset, lambda x : x[0:dataset.A_nc, :, :]),
num_workers=int(opt.workers), batch_size=opt.batchSize, shuffle=True))
train_b = InfiniteDataSampler(DataLoader(CropDataset(dataset, lambda x : x[dataset.A_nc:, :, :]),
num_workers=int(opt.workers), batch_size=opt.batchSize, shuffle=True))
# SETUP GENERATOR MODEL
G = ConvGenerator(opt, opt.generator_channels, opt.loadSize, nc).to(device)
G_noise = torch.distributions.uniform.Uniform(torch.Tensor([-1] * opt.nz), torch.Tensor([1] * opt.nz))
G_opt = Utils.create_optim(G.parameters(), opt)
# Prepare data sources that are a combination of real data and generator network, or purely from the generator network
G_input_data = DataLoader(GeneratorInputDataset(None, G_noise), num_workers=int(opt.workers),
batch_size=opt.batchSize, shuffle=True)
G_inputs = InfiniteDataSampler(G_input_data)
G_outputs = TransformDataSampler(InfiniteDataSampler(G_input_data), G, device)
# SETUP DISCRIMINATOR(S)
if opt.factorGAN == 1:
# Setup disc networks
D1 = ConvDiscriminator(opt.loadSize, opt.loadSize, dataset.A_nc, opt.disc_channels).to(device)
D2 = ConvDiscriminator(opt.loadSize, opt.loadSize, dataset.B_nc, opt.disc_channels).to(device)
# If our dep discriminators are only defined on classifier probabilites, integrate classification into discriminator network as first step
if opt.use_real_dep_disc == 1:
DP = ConvDiscriminator(opt.loadSize, opt.loadSize, nc, opt.disc_channels, spectral_norm=(opt.lipschitz_p == 1)).to(device)
else:
DP = lambda x : 0
DQ = ConvDiscriminator(opt.loadSize, opt.loadSize, nc, opt.disc_channels).to(device)
print(sum(p.numel() for p in D1.parameters()))
# Prepare discriminators for training method
# Marginal discriminators
D1_setup = DiscriminatorSetup("D1", D1, Utils.create_optim(D1.parameters(), opt),
train_a, G_outputs, crop_fake=lambda x : x[:, 0:dataset.A_nc, :, :])
D2_setup = DiscriminatorSetup("D2", D2, Utils.create_optim(D2.parameters(), opt),
train_b, G_outputs, crop_fake=lambda x : x[:, dataset.A_nc:, :, :])
D_setups = [D1_setup, D2_setup]
# Dependency discriminators
shuffle_batch_func = lambda x: Utils.shuffle_batch_dims(x, [dataset.A_nc])
if opt.use_real_dep_disc:
DP_setup = DependencyDiscriminatorSetup("DP", DP, Utils.create_optim(DP.parameters(), opt),
train_joint, shuffle_batch_func)
else:
DP_setup = None
DQ_setup = DependencyDiscriminatorSetup("DQ", DQ,Utils.create_optim(DQ.parameters(), opt),
G_outputs, shuffle_batch_func)
D_dep_setups = [DependencyDiscriminatorPair(DP_setup, DQ_setup)]
else:
D = ConvDiscriminator(opt.loadSize, opt.loadSize, nc, opt.disc_channels).to(device)
print(sum(p.numel() for p in D.parameters()))
D_setups = [DiscriminatorSetup("D", D, Utils.create_optim(D.parameters(), opt), train_joint, G_outputs)]
D_dep_setups = []
# RUN TRAINING
training.AdversarialTraining.train(opt, G, G_inputs, G_opt, D_setups, D_dep_setups, device, opt.log_path)
torch.save(G.state_dict(), os.path.join(opt.experiment_path, "G"))
def eval(opt):
device = Utils.get_device(opt.cuda)
set_paths(opt)
# Get test dataset
dataset = get_aligned_dataset(opt, "val")
nc = dataset.A_nc + dataset.B_nc
# SETUP GENERATOR MODEL
G = ConvGenerator(opt, opt.generator_channels, opt.loadSize, nc).to(device)
G_noise = torch.distributions.uniform.Uniform(torch.Tensor([-1] * opt.nz), torch.Tensor([1] * opt.nz))
# Prepare data sources that are a combination of real data and generator network, or purely from the generator network
G_input_data = DataLoader(GeneratorInputDataset(None, G_noise), num_workers=int(opt.workers),
batch_size=opt.batchSize, shuffle=True)
G_inputs = InfiniteDataSampler(G_input_data)
G_outputs = TransformDataSampler(InfiniteDataSampler(G_input_data), G, device)
G.load_state_dict(torch.load(os.path.join(opt.experiment_path, opt.eval_model)))
G.eval()
# EVALUATE
# GENERATE EXAMPLES
generate_images(G, G_inputs, opt.gen_path, 1000, device, lambda x: Utils.create_image_pair(x, dataset.A_nc, dataset.B_nc))
# COMPUTE LS DISTANCE
# Partition into test train and test test
test_train_samples = int(0.8 * float(len(dataset)))
test_test_samples = len(dataset) - test_train_samples
print("VALIDATION SAMPLES: " + str(test_train_samples))
print("TEST SAMPLES: " + str(test_test_samples))
real_test_train_loader = DataLoader(Subset(dataset, range(test_train_samples)), num_workers=int(opt.workers), batch_size=opt.batchSize, shuffle=True, drop_last=True)
real_test_test_loader = DataLoader(Subset(dataset, range(test_train_samples, len(dataset))), num_workers=int(opt.workers), batch_size=opt.batchSize)
# Initialise classifier
classifier_factory = lambda : ConvDiscriminator(opt.loadSize, opt.loadSize, nc, filters=opt.ls_channels, spectral_norm=False).to(device)
# Compute metric
losses = LS.compute_ls_metric(classifier_factory, real_test_train_loader, real_test_test_loader, G_outputs, opt.ls_runs, device)
# WRITE RESULTS INTO CSV FOR LATER ANALYSIS
file_existed = os.path.exists(os.path.join(opt.experiment_path, "LS.csv"))
with open(os.path.join(opt.experiment_path, "LS.csv"), "a") as csv_file:
writer = csv.writer(csv_file)
model = "factorGAN" if opt.factorGAN else "gan"
if not file_existed:
writer.writerow(["LS", "Model", "Samples", "Dataset", "Samples_Validation","Samples_Test"])
for val in losses:
writer.writerow([val, model, opt.num_joint_samples, opt.dataset, test_train_samples, test_test_samples])
def get_opt():
# COLLECT ALL CMD ARGUMENTS
parser = training.TrainingOptions.get_parser()
parser.add_argument('--dataset', type=str, default="edges2shoes",
help="Dataset to train on - can be cityscapes or edges2shoes (but other img2img datasets can be integrated easily")
parser.add_argument('--num_joint_samples', type=int, default=1000,
help="Number of joint observations available for training normal gan/dependency discriminators")
parser.add_argument('--loadSize', type=int, default=64,
help="Dimensions (no. of pixels) the dataset images are resampled to")
parser.add_argument('--generator_channels', type=int, default=64,
help="Number of intial feature channels used in G. 64 was used in the paper")
parser.add_argument('--disc_channels', type=int, default=32,
help="Number of intial feature channels used in each discriminator")
# LS distance eval settings
parser.add_argument('--ls_runs', type=int, default=10,
help="Number of LS Discriminator training runs for evaluation")
parser.add_argument('--ls_channels', type=int, default=16,
help="Number of initial feature channels used for LS discriminator. 16 in the paper")
opt = parser.parse_args()
print(opt)
# Set generator to sigmoid output
opt.generator_activation = "sigmoid"
return opt
if __name__ == "__main__":
opt = get_opt()
if not opt.eval:
train(opt)
eval(opt)