-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathUtils.py
executable file
·250 lines (220 loc) · 9.72 KB
/
Utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import os
import librosa
import numpy as np
import torch
import random
import math
def create_image_pair(x, ch1, ch2):
'''
Concatenates two images horizontally (that are saved in x using 3 or 1 channels for each image
:param x: Pair of images (along channel dimension)
:param ch1: Number of channels for image 1
:param ch2: Number of channels for image 2
:return: Horizontally stacked image pair
'''
assert(ch1 == 3 or ch1 == 1)
assert(ch2 == 3 or ch2 == 1)
assert(x.shape[1] == ch1 + ch2)
repeat_left = 3 if ch1 == 1 else 1
repeat_right = 3 if ch2 == 1 else 1
return torch.cat([x[:, :ch1, :, :].repeat(1, repeat_left, 1, 1), x[:, ch1:, :, :].repeat(1,repeat_right,1,1)], dim=3)
def is_square(integer):
'''
Check if number is a square of another number
:param integer: Number to be checked
:return: Whether number is square of another number
'''
root = math.sqrt(integer)
if int(root + 0.5) ** 2 == integer:
return True
else:
return False
def shuffle_batch_dims(batch, marginal_index, dim=1):
'''
Shuffles groups of dimensions of a batch of samples so that groups are drawn independently of each other
:param batch: Input batch to be shuffled
:param marginal_index: If list: List of indices that denote the boundaries of the groups to be shuffled, excluding 0 and batch.shape[1].
If int: Each group has this many dimensions, batch.shape[1] must be divisible by this number. If None: Input batch needs to have groups as dimensions: [Num_samples, Group1_dim, ... GroupN_dim]
:return: Shuffled batch
'''
if isinstance(batch, torch.Tensor):
out = batch.clone()
else:
out = batch.copy()
if isinstance(marginal_index, int):
assert (batch.shape[dim] % marginal_index == 0)
marginal_index = [(x+1)*marginal_index for x in range(int(batch.shape[1] / marginal_index) - 1)]
if isinstance(marginal_index, list):
groups = marginal_index + [batch.shape[dim]]
for group_idx in range(len(groups)-1): # Shuffle each group, except the first one
dim_start = groups[group_idx]
dim_end = groups[group_idx+1]
ordering = np.random.permutation(batch.shape[0])
if dim == 1:
out[:,dim_start:dim_end] = batch[ordering, dim_start:dim_end]
elif dim == 2:
out[:, :, dim_start:dim_end] = batch[ordering, :, dim_start:dim_end]
elif dim == 3:
out[:, :, :, dim_start:dim_end] = batch[ordering, :, :, dim_start:dim_end]
else:
raise NotImplementedError
else:
raise NotImplementedError
return out
def load(path, sr=22050, mono=True, offset=0.0, duration=None, dtype=np.float32):
# ALWAYS output (n_frames, n_channels) audio
y, orig_sr = librosa.load(path, sr, mono, offset, duration, dtype)
if len(y.shape) == 1:
y = np.expand_dims(y, axis=0)
return y.T, orig_sr
def shuffle_batch_image_quadrants(batch):
'''
Given an input batch of square images, shuffle the four quadrants independently across examples
:param batch: Input batch of square images
:return: Shuffled square images
'''
input_shape = batch.shape
if len(batch.shape) == 2: # [batch, dim] shape means we have to reshape
# Check if data can be shaped into square image, if it is not already
dim = int(batch.shape[1])
root = int(math.sqrt(dim) + 0.5)
assert(root ** 2 == dim)
elif len(batch.shape) > 2:
# Check if last two dimensions are the same size N, and reshape to [-1, C, N, N]
assert(batch.shape[-2] == batch.shape[-1])
root = batch.shape[-1]
else:
raise SyntaxError
assert(root % 2 == 0) # Image should be splittable in half
q = root // 2 # Length/width of each quadrant
# Change to [B, C, N, N] shape
if isinstance(batch, torch.Tensor):
batch_reshape = batch.view((batch.shape[0], -1, root, root))
out = batch_reshape.clone()
else:
batch_reshape = np.reshape(batch, (batch.shape[0], -1, root, root))
out = batch_reshape.copy()
# Shuffle the four quadrants of the square image around
for row in range(2):
for col in range(2):
if row == 0 and col == 0: continue # Do not need to shuffle first quadrant, if we shuffle all the others across the batch
ordering = np.random.permutation(batch.shape[0])
out[:, :, row*q:(row+1)*q, col*q:(col+1)*q] = batch_reshape[ordering, :, row*q:(row+1)*q, col*q:(col+1)*q]
# Reshape to the shape of the original input
if isinstance(batch, torch.Tensor):
out = out.view(input_shape)
else:
out = np.reshape(out, input_shape)
return out
def compute_spectrogram(audio, fft_size, hop_size):
'''
Compute magnitude spectrogram for audio signal
:param audio: Audio input signal
:param fft_size: FFT Window size (samples)
:param hop_size: Hop size (samples) for STFT
:return: Magnitude spectrogram
'''
stft = librosa.core.stft(audio, fft_size, hop_size)
mag, ph = librosa.core.magphase(stft)
return normalise_spectrogram(mag), ph
def normalise_spectrogram(mag, cut_last_freq=True):
'''
Normalise audio spectrogram with log-normalisation
:param mag: Magnitude spectrogram to be normalised
:param cut_last_freq: Whether to cut highest frequency bin to reach power of 2 in number of bins
:return: Normalised spectrogram
'''
if cut_last_freq:
# Throw away last freq bin to make it number of freq bins a power of 2
out = mag[:-1,:]
# Normalize with log1p
out = np.log1p(out)
return out
def normalise_spectrogram_torch(mag):
return torch.log1p(mag)
def denormalise_spectrogram(mag, pad_freq=True):
'''
Reverses normalisation performed in "normalise_spectrogram" function
:param mag: Normalised magnitudes
:param pad_freq: Whether to append a frequency bin as highest frequency with 0 as energy
:return: Reconstructed spectrogram
'''
out = np.expm1(mag)
if pad_freq:
out = np.pad(out, [(0,1), (0, 0)], mode="constant")
return out
def denormalise_spectrogram_torch(mag):
return torch.expm1(mag)
def spectrogramToAudioFile(magnitude, fftWindowSize, hopSize, phaseIterations=10, phase=None, length=None):
'''
Computes an audio signal from the given magnitude spectrogram, and optionally an initial phase.
Griffin-Lim is executed to recover/refine the given the phase from the magnitude spectrogram.
:param magnitude: Magnitudes to be converted to audio
:param fftWindowSize: Size of FFT window used to create magnitudes
:param hopSize: Hop size in frames used to create magnitudes
:param phaseIterations: Number of Griffin-Lim iterations to recover phase
:param phase: If given, starts ISTFT with this particular phase matrix
:param length: If given, audio signal is clipped/padded to this number of frames
:return:
'''
if phase is not None:
if phaseIterations > 0:
# Refine audio given initial phase with a number of iterations
return reconPhase(magnitude, fftWindowSize, hopSize, phaseIterations, phase, length)
# reconstructing the new complex matrix
stftMatrix = magnitude * np.exp(phase * 1j) # magnitude * e^(j*phase)
audio = librosa.istft(stftMatrix, hop_length=hopSize, length=length)
else:
audio = reconPhase(magnitude, fftWindowSize, hopSize, phaseIterations)
return audio
def reconPhase(magnitude, fftWindowSize, hopSize, phaseIterations=10, initPhase=None, length=None):
'''
Griffin-Lim algorithm for reconstructing the phase for a given magnitude spectrogram, optionally with a given
intial phase.
:param magnitude: Magnitudes to be converted to audio
:param fftWindowSize: Size of FFT window used to create magnitudes
:param hopSize: Hop size in frames used to create magnitudes
:param phaseIterations: Number of Griffin-Lim iterations to recover phase
:param initPhase: If given, starts reconstruction with this particular phase matrix
:param length: If given, audio signal is clipped/padded to this number of frames
:return:
'''
for i in range(phaseIterations):
if i == 0:
if initPhase is None:
reconstruction = np.random.random_sample(magnitude.shape) + 1j * (2 * np.pi * np.random.random_sample(magnitude.shape) - np.pi)
else:
reconstruction = np.exp(initPhase * 1j) # e^(j*phase), so that angle => phase
else:
reconstruction = librosa.stft(audio, fftWindowSize, hopSize)
spectrum = magnitude * np.exp(1j * np.angle(reconstruction))
if i == phaseIterations - 1:
audio = librosa.istft(spectrum, hopSize, length=length)
else:
audio = librosa.istft(spectrum, hopSize)
return audio
def make_dirs(dirs):
if isinstance(dirs, str):
dirs = [dirs]
assert(isinstance(dirs, list))
for dir in dirs:
if not os.path.exists(dir):
os.makedirs(dir)
def create_optim(parameters, opt):
return torch.optim.Adam(parameters, lr=opt.lr, betas=(opt.beta1, 0.999), weight_decay=opt.L2)
def get_device(cuda):
if torch.cuda.is_available() and not cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
device = torch.device("cuda:0" if cuda else "cpu")
return device
def set_seeds(opt):
'''
Set Python, numpy as and torch random seeds to a fixed number
:param opt: Option dictionary containined .seed member value
'''
if opt.seed is None:
opt.seed = random.randint(1, 10000)
print("Random Seed: ", opt.seed)
random.seed(opt.seed)
torch.manual_seed(opt.seed)
np.random.seed(opt.seed)