-
Notifications
You must be signed in to change notification settings - Fork 83
/
Copy pathkernel.c
366 lines (308 loc) · 9.52 KB
/
kernel.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
/*
* ps4-kexec - a kexec() implementation for Orbis OS / FreeBSD
*
* Copyright (C) 2015-2016 shuffle2 <[email protected]>
* Copyright (C) 2015-2016 Hector Martin "marcan" <[email protected]>
*
* This code is licensed to you under the 2-clause BSD license. See the LICENSE
* file for more information.
*/
#include "kernel.h"
#include "string.h"
#include "elf.h"
#include "x86.h"
#include "magic.h"
struct ksym_t kern;
int (*early_printf)(const char *fmt, ...) = NULL;
#define eprintf(...) do { if (early_printf) early_printf(__VA_ARGS__); } while(0)
#ifdef NO_SYMTAB
#define RESOLVE_NOERR(name) do { \
if (kern_off_ ## name == 0) { \
kern.name = 0; \
} else { \
kern.name = (void *)(kern.kern_base + kern_off_ ## name); \
} \
} while (0);
#define RESOLVE(name) do { \
if (kern_off_ ## name == 0) { \
return 0; \
} \
RESOLVE_NOERR(name) \
} while (0);
#else
#define KERNSIZE 0x2000000
static const u8 ELF_IDENT[9] = "\x7f" "ELF\x02\x01\x01\x09\x00";
static Elf64_Sym *symtab;
static char *strtab;
static size_t strtab_size;
static Elf64_Ehdr *find_kern_ehdr(void)
{
// Search for the kernel copy embedded in ubios, then follow it to see
// where it was relocated to
for (uintptr_t p = kern.kern_base; p < kern.kern_base + KERNSIZE; p += PAGE_SIZE) {
Elf64_Ehdr *ehdr = (Elf64_Ehdr *)p;
if (!memcmp(ehdr->e_ident, ELF_IDENT, sizeof(ELF_IDENT))) {
for (size_t i = 0; i < ehdr->e_phnum; i++) {
Elf64_Phdr *phdr = (Elf64_Phdr *)(p + ehdr->e_phoff) + i;
if (phdr->p_type == PT_PHDR) {
return (Elf64_Ehdr *)(phdr->p_vaddr - ehdr->e_phoff);
}
}
}
}
return NULL;
}
static Elf64_Dyn *elf_get_dyn(Elf64_Ehdr *ehdr)
{
Elf64_Phdr *phdr = (Elf64_Phdr *)((uintptr_t)ehdr + ehdr->e_phoff);
for (size_t i = 0; i < ehdr->e_phnum; i++, phdr++) {
if (phdr->p_type == PT_DYNAMIC) {
return (Elf64_Dyn *)phdr->p_vaddr;
}
}
return NULL;
}
static int elf_parse_dyn(Elf64_Dyn *dyn)
{
for (Elf64_Dyn *dp = dyn; dp->d_tag != DT_NULL; dp++) {
switch (dp->d_tag) {
case DT_SYMTAB:
symtab = (Elf64_Sym *)dp->d_un.d_ptr;
break;
case DT_STRTAB:
strtab = (char *)dp->d_un.d_ptr;
break;
case DT_STRSZ:
strtab_size = dp->d_un.d_val;
break;
}
}
return symtab && strtab && strtab_size;
}
void *kernel_resolve(const char *name)
{
for (Elf64_Sym *sym = symtab; (uintptr_t)(sym + 1) < (uintptr_t)strtab; sym++) {
if (!strcmp(name, &strtab[sym->st_name])) {
eprintf("kern.%s = %p\n", name, (void*)sym->st_value);
return (void *)sym->st_value;
}
}
eprintf("Failed to resolve symbol '%s'\n", name);
return NULL;
}
#define RESOLVE_NOERR(name) (kern.name = kernel_resolve(#name))
#define RESOLVE(name) if (!RESOLVE_NOERR(name)) return 0;
#endif
static int resolve_symbols(void)
{
RESOLVE(printf);
early_printf = kern.printf;
RESOLVE(copyin);
RESOLVE(copyout);
RESOLVE(copyinstr);
RESOLVE(kernel_map);
RESOLVE(kernel_pmap_store);
RESOLVE(kmem_alloc_contig);
RESOLVE(kmem_free);
RESOLVE(pmap_extract);
RESOLVE(pmap_protect);
RESOLVE(sysent);
RESOLVE(sched_pin);
RESOLVE(sched_unpin);
RESOLVE(smp_rendezvous);
RESOLVE(smp_no_rendevous_barrier);
RESOLVE(icc_query_nowait);
RESOLVE_NOERR(Starsha_UcodeInfo);
RESOLVE_NOERR(gpu_devid_is_9924);
RESOLVE_NOERR(gc_get_fw_info);
return 1;
}
#define M_WAITOK 0x0002
#define M_ZERO 0x0100
#define VM_MEMATTR_DEFAULT 0x06
void *kernel_alloc_contig(size_t size)
{
// use kmem_alloc_contig instead of contigalloc to avoid messing with a malloc_type...
vm_offset_t ret = kern.kmem_alloc_contig(
*kern.kernel_map, size, M_ZERO | M_WAITOK, (vm_paddr_t)0,
~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT);
if (!ret) {
kern.printf("Failed to allocate %zud bytes\n", size);
return NULL;
}
return (void *)PA_TO_DM(kern.pmap_extract(kern.kernel_pmap_store, ret));
}
void kernel_free_contig(void *addr, size_t size)
{
if (!addr)
return;
kern.kmem_free(*kern.kernel_map, (vm_offset_t)addr, size);
}
int kernel_hook_install(void *target, void *hook)
{
uintptr_t t = (uintptr_t)target; // addr to redirect to
uintptr_t h = (uintptr_t)hook; // place to write the thunk
if (!hook || !target) {
return 0;
}
kern.printf("kernel_hook_install(%p, %p)\n", target, hook);
if (!(t & (1L << 63))) {
kern.printf("\n===================== WARNING =====================\n");
kern.printf("hook target function address: %p\n", target);
kern.printf("It looks like we're running from userland memory.\n");
kern.printf("Please run this code from a kernel memory mapping.\n\n");
return 0;
}
s64 displacement = t - (h + 5);
kern.sched_pin();
u64 wp = write_protect_disable();
if (displacement < -0x80000000 || displacement > 0x7fffffff) {
kern.printf(" Using 64bit absolute jump\n");
struct __attribute__((packed)) jmp_t{
u8 op[2];
s32 zero;
void *target;
} jmp = {
.op = { 0xff, 0x25 },
.zero = 0,
.target = target,
};
ASSERT_STRSIZE(struct jmp_t, 14);
memcpy(hook, &jmp, sizeof(jmp));
} else {
kern.printf(" Using 32bit relative jump\n");
struct __attribute__((packed)) jmp_t{
u8 op[1];
s32 imm;
} jmp = {
.op = { 0xe9 },
.imm = displacement,
};
ASSERT_STRSIZE(struct jmp_t, 5);
memcpy(hook, &jmp, sizeof(jmp));
}
wbinvd();
write_protect_restore(wp);
kern.sched_unpin();
return 1;
}
void kernel_syscall_install(int num, void *call, int narg)
{
struct sysent_t *sy = &kern.sysent[num];
kern.sched_pin();
u64 wp = write_protect_disable();
memset(sy, 0, sizeof(*sy));
sy->sy_narg = narg;
sy->sy_call = call;
sy->sy_thrcnt = 1;
write_protect_restore(wp);
kern.sched_unpin();
}
void kernel_remap(void *start, void *end, int perm)
{
u64 s = ((u64)start) & ~(u64)(PAGE_SIZE-1);
u64 e = ((u64)end + PAGE_SIZE - 1) & ~(u64)(PAGE_SIZE-1);
kern.printf("pmap_protect(pmap, %p, %p, %d)\n", (void*)s, (void*)e, perm);
kern.pmap_protect(kern.kernel_pmap_store, s, e, perm);
}
static volatile int _global_test = 0;
#ifndef DO_NOT_REMAP_RWX
extern u8 _start[], _end[];
static int patch_pmap_check(void)
{
u8 *p;
for (p = (u8*)kern.pmap_protect;
p < ((u8*)kern.pmap_protect + 0x500); p++) {
#ifdef PS4_5_05
if (!memcmp(p, "\xB8\x06\x00\x00\x00\xC4", 6)) {
p[1] = 0;
kern.printf("pmap_protect patch successful (found at %p)\n", p);
return 1;
}
#else
if (!memcmp(p, "x83\xe0\x06\x83\xf8\x06", 6)) {
p[2] = 0;
kern.printf("pmap_protect patch successful (found at %p)\n", p);
return 1;
}
#endif
}
kern.printf("pmap_protect patch failed!\n");
return 0;
}
#endif
int kernel_init(void *_early_printf)
{
int rv = -1;
if (_early_printf)
early_printf = _early_printf;
eprintf("kernel_init()\n");
#ifdef KASLR
// use `early_printf` to calculate kernel base
if (early_printf == NULL)
return 0;
kern.kern_base = (u64)(early_printf - kern_off_printf);
if ((kern.kern_base & PAGE_MASK) != 0) {
eprintf("Kernel base is not aligned\n");
return 0;
} else {
eprintf("Kernel base = %llx\n", kern.kern_base);
}
u64 DMPML4I = *(u32 *)(kern.kern_base + kern_off_dmpml4i);
u64 DMPDPI = *(u32 *)(kern.kern_base + kern_off_dmpdpi);
#else
kern.kern_base = KVADDR(0x1ff, 0x1fe, 0, 0); // 0xffffffff80000000
u64 DMPML4I = 0x1fc;
u64 DMPDPI = 0;
#endif
kern.dmap_base = KVADDR(DMPML4I, DMPDPI, 0, 0);
eprintf("Direct map base = %llx\n", kern.dmap_base);
// We may not be mapped writable yet, so to be able to write to globals
// we need WP disabled.
u64 flags = intr_disable();
u64 wp = write_protect_disable();
#ifndef NO_SYMTAB
Elf64_Ehdr *ehdr = find_kern_ehdr();
if (!ehdr) {
eprintf("Could not find kernel ELF header\n");
goto err;
}
eprintf("ELF header at %p\n", ehdr);
Elf64_Dyn *dyn = elf_get_dyn(ehdr);
if (!dyn) {
eprintf("Could not find kernel dynamic header\n");
goto err;
}
eprintf("ELF dynamic section at %p\n", dyn);
if (!elf_parse_dyn(dyn)) {
eprintf("Failed to parse ELF dynamic section\n");
goto err;
}
#endif
if (!resolve_symbols()) {
eprintf("Failed to resolve all symbols\n");
goto err;
}
// Pin ourselves as soon as possible. This is expected to be released by the caller.
kern.sched_pin();
#ifndef DO_NOT_REMAP_RWX
if (!patch_pmap_check())
goto err;
#endif
#ifndef DO_NOT_REMAP_RWX
// kernel_remap may need interrupts, but may not write to globals!
enable_interrupts();
kernel_remap(_start, _end, 7);
disable_interrupts();
#endif
// Writing to globals is now safe.
kern.printf("Testing global variable access (write protection)...\n");
_global_test = 1;
kern.printf("OK.\n");
kern.printf("Kernel interface initialized\n");
rv = 0;
err:
write_protect_restore(wp);
intr_restore(flags);
return rv;
}