-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlajiTrainBackone.py
273 lines (235 loc) · 10.7 KB
/
lajiTrainBackone.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
from model import build_ssd
from data import *
from config import crack,voc, laji
from config import *
from utils import MultiBoxLoss
import time
import torch
import torch.nn as nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torch.nn.init as init
import torch.utils.data as data
from tensorboardX import SummaryWriter
from tqdm.autonotebook import tqdm
import numpy as np
import datetime
import argparse
from tqdm import tqdm
def str2bool(v):
return v.lower() in ("yes", "true", "t", "1")
'''
from eval import test_net
'''
torch.cuda.set_device(0)
if torch.cuda.is_available():
torch.cuda.manual_seed(42)
else:
torch.manual_seed(42)
parser = argparse.ArgumentParser(description=
'Single Shot MultiBox Detector Training With Pytorch')
train_set = parser.add_mutually_exclusive_group()
parser.add_argument('--dataset', default='LAJI', choices=['LAJI', 'VOC', 'COCO','CRACK','TRAFIC'],
type=str, help='VOC or COCO')
parser.add_argument('--basenet', default=None,#'vgg16_reducedfc.pth',
help='Pretrained base model')
parser.add_argument('--batch_size', default=26, type=int,
help='Batch size for training')
parser.add_argument('--max_epoch', default=500, type=int,
help='Max Epoch for training')
parser.add_argument('--resume', default=None,
type=str, help='Checkpoint state_dict file to resume training from')
parser.add_argument('--start_iter', default=0, type=int,
help='Resume training at this iter')
parser.add_argument('--num_workers', default=4, type=int,
help='Number of workers used in dataloading')
parser.add_argument('--cuda', default=True, type=str2bool,
help='Use CUDA to train model')
parser.add_argument('--lr', '--learning-rate', default=1e-3, type=float,
help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float,
help='Momentum value for optim')
parser.add_argument('--weight_decay', default=5e-4, type=float,
help='Weight decay for SGD')
parser.add_argument('--gamma', default=0.2, type=float,
help='Gamma update for SGD')
parser.add_argument('--visdom', default='',type=str,
help='Use visdom')
parser.add_argument('--work_dir', default='work_dir/',
help='Directory for saving checkpoint models')
parser.add_argument('--weight', default=16, type=int)
parser.add_argument('--log_path', default='logs/',
help='Directory for saving checkpoint models')
parser.add_argument('--net_name', default='ssd300_se_resnext50_32x4d',
help='Directory for saving checkpoint models')
parser.add_argument('--save_path', default='weights/train_weights/',
help='Directory for saving checkpoint models')
parser.add_argument('--config', default='new_lr_mosaic_correct_transform_full_data_ciou_sgd_1gpu_6_16',
help='Directory for saving checkpoint models')
args = parser.parse_args()
weight = args.weight
if torch.cuda.is_available():
if args.cuda:
torch.set_default_tensor_type('torch.cuda.FloatTensor')
if not args.cuda:
print("WARNING: It looks like you have a CUDA device, but aren't " +
"using CUDA.\nRun with --cuda for optimal training speed.")
torch.set_default_tensor_type('torch.FloatTensor')
else:
torch.set_default_tensor_type('torch.FloatTensor')
import os
if not os.path.exists(args.work_dir):
os.mkdir(args.work_dir)
def data_eval(dataset, net):
return test_net('eval/', net, True, dataset,
BaseTransform(trafic['min_dim'], MEANS), 5, 300,
thresh=0.05)
def train():
'''
get the dataset and dataloader
'''
print(args.dataset)
if args.dataset == 'COCO':
if not os.path.exists(COCO_ROOT):
parser.error('Must specify dataset_root if specifying dataset')
cfg = coco
dataset = COCODetection(root=COCO_ROOT,
transform=SSDAugmentation(cfg['min_dim'],
MEANS),filename = 'train.txt')
elif args.dataset == 'VOC':
if not os.path.exists(VOC_ROOT):
parser.error('Must specify dataset_root if specifying dataset')
cfg = voc
dataset = VOCDetection(root=VOC_ROOT,
transform = SSDAugmentation(cfg['min_dim'],
mean = cfg['mean'],std = cfg['std']))
print(len(dataset))
elif args.dataset == 'LAJI':
if not os.path.exists(LAJI_ROOT):
parser.error('Must specify dataset_root if specifying dataset')
cfg = laji_se_resnext50_32x4d
dataset = LAJIDetection(root=LAJI_ROOT,
transform = SSDAugmentation(cfg['min_dim'],
mean = cfg['mean'],std = cfg['std']))
print(len(dataset))
data_loader = data.DataLoader(dataset, args.batch_size,
num_workers=args.num_workers,
shuffle=True, collate_fn=detection_collate,
pin_memory=True)
#build, load, the net
ssd_net = build_ssd('train',size = cfg['min_dim'],cfg = cfg)
'''
for name,param in ssd_net.named_parameters():
if param.requires_grad:
print(name)
'''
start_iter = args.start_iter
if args.resume:
print('Resuming training, loading {}...'.format(args.resume))
data_tmp = torch.load(args.resume)
ssd_net.load_state_dict(data_tmp)
start_iter = int(args.resume.split("/")[-1].split("_")[-2])
print("start_iter is {}".format(start_iter))
if args.cuda:
net = ssd_net.cuda()
net.train()
#optimizer
optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=args.momentum,
weight_decay=args.weight_decay)
# optimizer = torch.optim.AdamW(net.parameters(), args.lr)
#loss:SmoothL1\Iou\Giou\Diou\Ciou
print(cfg['losstype'])
criterion = MultiBoxLoss(cfg = cfg,overlap_thresh = 0.5,
prior_for_matching = True,bkg_label = 0,
neg_mining = True, neg_pos = 3,neg_overlap = 0.5,
encode_target = False, use_gpu = args.cuda,loss_name = cfg['losstype'])
project_name = "_".join([args.net_name, args.config])
pth_path = os.path.join(args.save_path, project_name)
log_path = os.path.join(pth_path, 'tensorboard')
os.makedirs(pth_path, exist_ok=True)
os.makedirs(log_path, exist_ok=True)
writer = SummaryWriter(log_path + f'/{datetime.datetime.now().strftime("%Y%m%d-%H%M%S")}/')
epoch_size = len(dataset) // args.batch_size
print('Training SSD on:', dataset.name,epoch_size)
iteration = args.start_iter
step_index = 0
loc_loss = 0
conf_loss = 0
step = 0
num_iter_per_epoch = len(data_loader)
lr_need_steps = list(cfg['lr_steps'])
for epoch in range(start_iter, args.max_epoch):
progress_bar = tqdm(data_loader)
for ii, batch_iterator in enumerate(progress_bar):
iteration += 1
if epoch in lr_need_steps:
lr_need_steps.remove(epoch)
step_index += 1
adjust_learning_rate(optimizer, args.gamma, epoch, step_index, iteration, num_iter_per_epoch)
# load train data
images, targets = batch_iterator
# print(images,targets)
if args.cuda:
images = images.cuda()
targets = [ann.cuda() for ann in targets]
else:
images = images
targets = [ann for ann in targets]
t0 = time.time()
out = net(images,'train')
optimizer.zero_grad()
loss_l, loss_c = criterion(out, targets)
loss = weight * loss_l + loss_c
loss.backward()
optimizer.step()
t1 = time.time()
loc_loss += loss_l.item()
conf_loss += loss_c.item()
progress_bar.set_description(
'Step: {}. Epoch: {}/{}. Iteration: {}/{}. Cls loss: {:.5f}. Reg loss: {:.5f}. Total loss: {:.5f}'.format(
step, epoch, args.max_epoch, ii + 1, num_iter_per_epoch, loss_c.item(),
loss_l.item(), loss.item()))
writer.add_scalars('Loss', {'train': loss}, step)
writer.add_scalars('Regression_loss', {'train': loss_l.item()}, step)
writer.add_scalars('Classfication_loss', {'train': loss_c.item()}, step)
current_lr = optimizer.param_groups[0]['lr']
writer.add_scalar('learning_rate', current_lr, step)
# print(iteration)
# if iteration % 10 == 0:
# print('timer: %.4f sec.' % (t1 - t0))
# print('iter ' + repr(iteration) + ' || Loss: %.4f ||' % (loss.item()), end=' ')
step += 1
# if epoch % 10 == 0 and epoch >60:
# # epoch>1000 and epoch % 50 == 0:
# print('Saving state, iter:', iteration)
# #print('loss_l:'+weight * loss_l+', loss_c:'+'loss_c')
# save_folder = args.work_dir+cfg['work_name']
# if not os.path.exists(save_folder):
# os.mkdir(save_folder)
# torch.save(net.state_dict(),args.work_dir+cfg['work_name']+'/ssd'+
# repr(epoch)+'_.pth')
if step != 0 and step % 5000 == 0:
torch.save(net.state_dict(), os.path.join(pth_path, f'{args.net_name}_{epoch}_{step}.pth'))
loc_loss = 0
conf_loss = 0
torch.save(net.state_dict(), os.path.join(pth_path, f'{args.net_name}_{epoch}_{step}.pth'))
# torch.save(net.state_dict(),args.work_dir+cfg['work_name']+'/ssd'+repr(epoch)+ str(args.weight) +'_.pth')
def save_checkpoint(model, pth_path, name):
# compound_coef = name.split("_")[0].split("-")[-1]
# file_name = "_".join([net_name, compound_coef, opt.config])
# if not os.path.exists(os.path.join(opt.saved_path, file_name)):
# os.mkdir(os.path.join(opt.saved_path, file_name))
torch.save(model.state_dict(), os.path.join(pth_path, name))
def adjust_learning_rate(optimizer, gamma, epoch, step_index, iteration, epoch_size):
"""Sets the learning rate
# Adapted from PyTorch Imagenet example:
# https://github.com/pytorch/examples/blob/master/imagenet/main.py
"""
if epoch < 6:
lr = 1e-6 + (args.lr-1e-6) * iteration / (epoch_size * 5)
else:
lr = args.lr * (gamma ** (step_index))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
if __name__ == '__main__':
train()