-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsmthedge.m
63 lines (57 loc) · 1.85 KB
/
smthedge.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
%
% (c) 2016 Charles L. Epstein and Michael O'Neil
%
%
% See the corresponding paper for technical information:
%
% C. L. Epstein and M. O'Neil, "Smoothed corners and scattered
% waves", arXiv:1506.08449, 2016.
%
function [edgesamp] = smthedge(v0,v1,nv0,nv1,mv0,mv1,lmin0,lmin1,h,k,ne,nh)
%
% This function smooths an edge which joins v0 to v1 where nv0 and nv1
% are the outer normal vectors to the faces that interesect along the
% given edge. h and k are the smoothing parameters. lmin0 and lmin1
% are the "top" and "bottom" of the smoothed vertex in terms of
% <X-v0,mv0> and <X-v1,mv1> respectively The program outputs 2*n+1
% samples of the smoothed edge lying in the plane orthogonal to the
% edge passing through its midpoint.
%
%the midpoint of the edge
m = (v0+v1)/2;
% the unit direction from v0 to v1
w = (v0-v1)/(sqrt((v0-v1)*(v0-v1)'));
% We find vectors normal to the edge lying along the two faces that
% meet along the edge.
if det([w;nv0;nv1]) > 0
X = cp(nv0,w);
Y = cp(w,nv1);
else
X = cp(nv1,w);
Y = cp(w,nv0);
end
[as0,j0,j1] = smthabv(h,k,2*ne);
s0 = (0:4*ne-1)/(2*ne)-1;
as = as0(j0:j1);
s = s0(j0:j1);
% Projections into the top and bottom planes
xp0 = X*mv0';
yp0 = Y*mv0';
xp1 = X*mv1';
yp1 = Y*mv1';
wp0 = w*mv0';
wp1 = w*mv1';
nj = j1-j0+1;
% Now we produce the samples along the smoothed edge
for j2 = 1:nj
x = (as(j2)+s(j2));
y = (as(j2)-s(j2));
tmax = (lmin0-(m-v0)*mv0'-x*xp0-y*yp0)/wp0;
tmin = (lmin1-(m-v1)*mv1'-x*xp1-y*yp1)/wp1;
tt = tmax*(1-((0:(nh-1))/(nh-1)))+tmin*(0:(nh-1))/(nh-1);
edgesamp{j2}(1:nh,1:3) = ones(nh,1)*(m(1:3) + ...
x*X(1:3)+y*Y(1:3))+tt(1:nh)'*w(1:3);
end
end