-
Notifications
You must be signed in to change notification settings - Fork 129
/
Copy pathtrain.py
375 lines (322 loc) · 14 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import torch
import os
import argparse
import logging
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from copy import deepcopy
from torch.utils.data.distributed import DistributedSampler
from torch.utils.data import DataLoader
from glob import glob
import yaml
from collections import OrderedDict
from time import time
from einops import rearrange, repeat
from diffusers import AutoencoderKL
from transformers import SpeechT5HifiGan
from audioldm2.utilities.data.dataset import AudioDataset
from constants import build_model
from utils import load_clip, load_clap, load_t5
from thop import profile
@torch.no_grad()
def update_ema(ema_model, model, decay=0.9999):
"""
Step the EMA model towards the current model.
"""
ema_params = OrderedDict(ema_model.named_parameters())
model_params = OrderedDict(model.named_parameters())
for name, param in model_params.items():
# TODO: Consider applying only to params that require_grad to avoid small numerical changes of pos_embed
ema_params[name].mul_(decay).add_(param.data, alpha=1 - decay)
def requires_grad(model, flag=True):
"""
Set requires_grad flag for all parameters in a model.
"""
for p in model.parameters():
p.requires_grad = flag
def cleanup():
"""
End DDP training.
"""
dist.destroy_process_group()
def create_logger(logging_dir):
"""
Create a logger that writes to a log file and stdout.
"""
if dist.get_rank() == 0: # real logger
logging.basicConfig(
level=logging.INFO,
format='[\033[34m%(asctime)s\033[0m] %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
handlers=[logging.StreamHandler(), logging.FileHandler(f"{logging_dir}/log.txt")]
)
logger = logging.getLogger(__name__)
else: # dummy logger (does nothing)
logger = logging.getLogger(__name__)
logger.addHandler(logging.NullHandler())
return logger
class RF(torch.nn.Module):
def __init__(self, ln=True):
super().__init__()
self.ln = ln
self.stratified = False
def forward(self, model, x, **kwargs):
b = x.size(0)
if self.ln:
if self.stratified:
# stratified sampling of normals
# first stratified sample from uniform
quantiles = torch.linspace(0, 1, b + 1).to(x.device)
z = quantiles[:-1] + torch.rand((b,)).to(x.device) / b
# now transform to normal
z = torch.erfinv(2 * z - 1) * math.sqrt(2)
t = torch.sigmoid(z)
else:
nt = torch.randn((b,)).to(x.device)
t = torch.sigmoid(nt)
else:
t = torch.rand((b,)).to(x.device)
texp = t.view([b, *([1] * len(x.shape[1:]))])
z1 = torch.randn_like(x)
zt = (1 - texp) * x + texp * z1
# make t, zt into same dtype as x
zt, t = zt.to(x.dtype), t.to(x.dtype)
vtheta = model(x=zt, t=t, **kwargs)
# print(z1.size(), x.size(), vtheta.size())
batchwise_mse = ((z1 - x - vtheta) ** 2).mean(dim=list(range(1, len(x.shape))))
tlist = batchwise_mse.detach().cpu().reshape(-1).tolist()
ttloss = [(tv, tloss) for tv, tloss in zip(t, tlist)]
return batchwise_mse.mean(), {"batchwise_loss": ttloss}
@torch.no_grad()
def sample(self, model, z, conds, null_cond=None, sample_steps=50, cfg=2.0, **kwargs):
b = z.size(0)
dt = 1.0 / sample_steps
dt = torch.tensor([dt] * b).to(z.device).view([b, *([1] * len(z.shape[1:]))])
images = [z]
for i in range(sample_steps, 0, -1):
t = i / sample_steps
t = torch.tensor([t] * b).to(z.device)
vc = model(x=z, t=t, **conds)
if null_cond is not None:
vu = model(x=z, t=t, **null_cond)
vc = vu + cfg * (vc - vu)
z = z - dt * vc
images.append(z)
return images
@torch.no_grad()
def sample_with_xps(self, model, z, conds, null_cond=None, sample_steps=50, cfg=2.0, **kwargs):
b = z.size(0)
dt = 1.0 / sample_steps
dt = torch.tensor([dt] * b).to(z.device).view([b, *([1] * len(z.shape[1:]))])
images = [z]
for i in range(sample_steps, 0, -1):
t = i / sample_steps
t = torch.tensor([t] * b).to(z.device)
# print(z.size(), t.size())
vc = model(x=z, t=t, **conds)
if null_cond is not None:
vu = model(x=z, t=t, **null_cond)
vc = vu + cfg * (vc - vu)
x = z - i * dt * vc
z = z - dt * vc
images.append(x)
return images
def prepare_model_inputs(args, batch, device, vae, clip, t5,):
text_embedding, text_embedding_mask = batch['text_embedding'], batch['text_embedding_mask']
text_embedding_t5, text_embedding_mask_t5 = batch['text_embedding_t5'], batch['text_embedding_mask_t5']
# print(image.size(), text_embedding.size(), text_embedding_t5.size())
# clip & mT5 text embedding
text_embedding = text_embedding.to(device)
text_embedding_mask = text_embedding_mask.to(device)
with torch.no_grad():
encoder_hidden_states = clip.hf_module(
text_embedding.to(device),
attention_mask=text_embedding_mask,
output_hidden_states=False,
)["pooler_output"] # ()
# print(encoder_hidden_states.size())
text_embedding_t5 = text_embedding_t5.to(device).squeeze(1)
text_embedding_mask_t5 = text_embedding_mask_t5.to(device).squeeze(1)
with torch.no_grad():
output_t5 = t5.hf_module(
input_ids=text_embedding_t5,
attention_mask=text_embedding_mask_t5,
output_hidden_states=False,
)
encoder_hidden_states_t5 = output_t5["last_hidden_state"].detach()
with torch.no_grad():
image = vae.encode(batch['log_mel_spec'].unsqueeze(1).to(device)).latent_dist.sample().mul_(vae.config.scaling_factor)
# positional embedding
bs, c, h, w = image.shape
image = rearrange(image, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2).float()
img_ids = torch.zeros(h // 2, w // 2, 3)
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
txt_ids = torch.zeros(bs, encoder_hidden_states_t5.shape[1], 3)
# Model conditions
model_kwargs = dict(
img_ids=img_ids.to(image.device),
txt = encoder_hidden_states_t5.to(image.device).float(),
txt_ids = txt_ids.to(image.device),
y = encoder_hidden_states.to(image.device).float(),
)
return image, model_kwargs
def main(args):
assert torch.cuda.is_available(), "Training currently requires at least one GPU."
dist.init_process_group("nccl")
assert args.global_batch_size % dist.get_world_size() == 0, f"Batch size must be divisible by world size."
rank = dist.get_rank()
device = rank % torch.cuda.device_count()
seed = args.global_seed * dist.get_world_size() + rank
torch.manual_seed(seed)
torch.cuda.set_device(device)
print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.")
# Setup an experiment folder:
if rank == 0:
os.makedirs(args.results_dir, exist_ok=True) # Make results folder (holds all experiment subfolders)
experiment_index = len(glob(f"{args.results_dir}/*"))
model_string_name = args.version.replace("/", "-") # e.g., DiT-XL/2 --> DiT-XL-2 (for naming folders)
experiment_dir = f"{args.results_dir}/{model_string_name}" # Create an experiment folder
checkpoint_dir = f"{experiment_dir}/checkpoints" # Stores saved model checkpoints
os.makedirs(checkpoint_dir, exist_ok=True)
logger = create_logger(experiment_dir)
logger.info(f"Experiment directory created at {experiment_dir}")
else:
logger = create_logger(None)
model = build_model(args.version).to(device)
parameters_sum = sum(x.numel() for x in model.parameters())
logger.info(f"{parameters_sum / 1000000.0} M")
if args.resume is not None:
print('load from: ', args.resume)
resume_ckpt = torch.load(args.resume, map_location=lambda storage, loc: storage)['ema']
model.load_state_dict(resume_ckpt)
# Note that parameter initialization is done within the DiT constructor
ema = deepcopy(model).to(device) # Create an EMA of the model for use after training
requires_grad(ema, False)
model = DDP(model.to(device), device_ids=[rank])
diffusion = RF()
model_path = '/maindata/data/shared/public/zhengcong.fei/dataset/dataset_music/audioldm2'
vae = AutoencoderKL.from_pretrained(os.path.join(model_path, 'vae')).to(device)
# vocoder = SpeechT5HifiGan.from_pretrained(os.path.join(model_path, 'vocoder')).to(device)
t5 = load_t5(device, max_length=256)
clap = load_clap(device, max_length=256)
# clip = load_clip(device)
opt = torch.optim.AdamW(model.parameters(), lr=3e-5, weight_decay=0)
config = yaml.load(
open(
'config/16k_64.yaml',
'r'
),
Loader=yaml.FullLoader,
)
dataset = AudioDataset(
config=config, split="train",
waveform_only=False,
dataset_json_path=args.data_path,
tokenizer=clap.tokenizer,
uncond_pro=0.1,
text_ctx_len=77,
tokenizer_t5=t5.tokenizer,
text_ctx_len_t5=256,
uncond_pro_t5=0.1,
)
sampler = DistributedSampler(
dataset,
num_replicas=dist.get_world_size(),
rank=rank,
shuffle=True,
seed=args.global_seed
)
loader = DataLoader(
dataset,
batch_size=int(args.global_batch_size // dist.get_world_size()),
shuffle=False,
sampler=sampler,
num_workers=args.num_workers,
pin_memory=True,
drop_last=True
)
logger.info(f"Dataset contains {len(dataset):,}")
# Prepare models for training:
update_ema(ema, model.module, decay=0) # Ensure EMA is initialized with synced weights
model.train() # important! This enables embedding dropout for classifier-free guidance
ema.eval() # EMA model should always be in eval mode
# Variables for monitoring/logging purposes:
train_steps = 0
log_steps = 0
running_loss = 0
start_time = time()
logger.info(f"Training for {args.epochs} epochs...")
for epoch in range(args.epochs):
sampler.set_epoch(epoch)
logger.info(f"Beginning epoch {epoch}...")
data_iter_step = 0
for batch in loader:
latents, model_kwargs = prepare_model_inputs(args, batch, device, vae, clap, t5,)
loss, _ = diffusion.forward(model=model, x=latents, **model_kwargs)
# bug fix
loss = loss / args.accum_iter
loss.backward()
if (data_iter_step + 1) % args.accum_iter == 0:
opt.step()
opt.zero_grad()
update_ema(ema, model.module)
data_iter_step += 1
# Log loss values:
running_loss += loss.item()
log_steps += 1
train_steps += 1
if train_steps % args.log_every == 0:
# Measure training speed:
torch.cuda.synchronize()
end_time = time()
steps_per_sec = log_steps / (end_time - start_time)
# Reduce loss history over all processes:
avg_loss = torch.tensor(running_loss / log_steps, device=device)
dist.all_reduce(avg_loss, op=dist.ReduceOp.SUM)
avg_loss = avg_loss.item() / dist.get_world_size()
logger.info(f"(step={train_steps:07d}) Train Loss: {avg_loss:.4f}, Train Steps/Sec: {steps_per_sec:.2f}")
# Reset monitoring variables:
running_loss = 0
log_steps = 0
start_time = time()
# Save DiT checkpoint:
if train_steps % args.ckpt_every == 0 and train_steps > 0:
if rank == 0:
checkpoint = {
# "model": model.module.state_dict(),
"ema": ema.state_dict(),
"opt": opt.state_dict(),
"args": args
}
checkpoint_path = f"{checkpoint_dir}/{train_steps:07d}.pt"
try:
torch.save(checkpoint, checkpoint_path)
except Exception as e:
print(e)
logger.info(f"Saved checkpoint to {checkpoint_path}")
dist.barrier()
# model.eval() # important! This disables randomized embedding dropout
# do any sampling/FID calculation/etc. with ema (or model) in eval mode ...
logger.info("Done!")
cleanup()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--data-path", type=str, default='fma_dataset.json')
parser.add_argument("--results-dir", type=str, default="results")
parser.add_argument("--resume", type=str, default=None)
parser.add_argument("--version", type=str, default="large")
parser.add_argument("--vae-path", type=str, default='audioldm2/vae')
parser.add_argument("--epochs", type=int, default=1400)
parser.add_argument("--global_batch_size", type=int, default=32)
parser.add_argument("--global-seed", type=int, default=1234)
parser.add_argument("--num-workers", type=int, default=4)
parser.add_argument("--log-every", type=int, default=100)
parser.add_argument('--accum_iter', default=16, type=int,)
parser.add_argument("--ckpt-every", type=int, default=100_000)
parser.add_argument('--local-rank', type=int, default=-1, help='local rank passed from distributed launcher')
args = parser.parse_args()
main(args)