forked from senthilps8/avmap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
592 lines (530 loc) · 23.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
from train_utils import (save_checkpoint, AverageMeter, ProgressMeter,
adjust_learning_rate,
update_pythonpath_relative_hydra)
from torch.utils.tensorboard import SummaryWriter
import torch.utils.data
import torch.optim
import torch.nn.parallel
import torch.nn.functional as F
import torch.multiprocessing as mp
import torch.nn as nn
import torch.cuda
import torch
import submitit
import hydra.utils as hydra_utils
import hydra
import json
from collections import defaultdict
import os
import sys
import copy
import time
import models
import models.avmap
import models.losses
import models.utils
import data.utils as data_utils
import numpy as np
import pdb
np.set_printoptions(precision=3)
os.environ['OMP_NUM_THREADS'] = '2'
class Worker:
def __init__(self, train_func, val_func):
self.train_func = train_func
self.val_func = val_func
def __call__(self, origargs):
args = copy.deepcopy(origargs)
print(origargs.pretty())
np.set_printoptions(precision=3)
import torch.backends.cudnn
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
print('Experiment name: {}'.format(args.logging.name))
print('Suffix: {}'.format(args.logging.suffix))
args.environment.dist_url = f'tcp://localhost:{args.environment.port}'
print('Using url {}'.format(args.environment.dist_url))
args.environment.distributed = args.environment.world_size > 1 or args.environment.multiprocessing_distributed
ngpus_per_node = torch.cuda.device_count()
print('Found {} gpus'.format(ngpus_per_node))
if args.environment.multiprocessing_distributed:
args.environment.world_size = ngpus_per_node * args.environment.world_size
mp.spawn(main_worker,
nprocs=ngpus_per_node,
args=(ngpus_per_node, args))
def checkpoint(self, *args,
**kwargs) -> submitit.helpers.DelayedSubmission:
return submitit.helpers.DelayedSubmission(
self, *args, **kwargs) # submits to requeuing
def main_worker(gpu, ngpus_per_node, args):
np.set_printoptions(precision=3)
import models
import models.losses
import data
import models.avmap
import data.rgba_dataset
import torch.backends.cudnn as cudnn
import builtins
import torch.distributed as dist
cudnn.benchmark = True
args.environment.gpu = gpu
# suppress printing if not master
if args.environment.multiprocessing_distributed and args.environment.gpu != 0:
def print_pass(*args):
pass
builtins.print = print_pass
if args.environment.gpu is not None:
print("Use GPU: {} for training".format(args.environment.gpu))
if args.environment.distributed:
if args.environment.multiprocessing_distributed:
args.environment.rank = args.environment.rank * ngpus_per_node + gpu
dist.init_process_group(backend=args.environment.dist_backend,
init_method=args.environment.dist_url,
world_size=args.environment.world_size,
rank=args.environment.rank)
writer = None
if args.logging.log_tb:
logdir = os.path.join(args.logging.tb_dir,
args.logging.name + args.logging.suffix)
os.makedirs(logdir, exist_ok=True)
writer = SummaryWriter(logdir)
os.makedirs(os.path.join(args.logging.ckpt_dir, args.logging.name),
exist_ok=True)
ckpt_fname = os.path.join(args.logging.ckpt_dir, args.logging.name,
'checkpoint_{:04d}.pth')
# Create Datasets and set padding, step size and n_classes
dataset_func = data.rgba_dataset.getRGBAmbisonicsAreaDataset
train_dataset, all_val_datasets = dataset_func(args.data)
n_semantic_categories = train_dataset.n_categories
args.model.output_padding = train_dataset.padding
args.model.step_size = int(train_dataset.step_size)
args.model.decoder_model.n_classes = 2 + n_semantic_categories
if args.environment.evaluate_path != '':
evaluate_path(args,
all_val_datasets,
args.environment.evaluate_path,
writer=writer)
sys.exit(0)
# Create Model and losses
model = models.avmap.SequenceOccupancySemanticsPredictor(args.model)
model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
criterion = models.losses.SimpleWeightedCrossEntropy(args).cuda(
args.environment.gpu)
cls_criterion = models.losses.NonZeroWeightedCrossEntropy(args).cuda(
args.environment.gpu)
print(model)
if args.environment.distributed:
torch.cuda.set_device(args.environment.gpu)
model.cuda(args.environment.gpu)
args.optim.batch_size = int(args.optim.batch_size / ngpus_per_node)
args.environment.workers = int(
(args.environment.workers + ngpus_per_node - 1) / ngpus_per_node)
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.environment.gpu])
else:
raise NotImplementedError("Only DistributedDataParallel is supported.")
optimizer = torch.optim.SGD(model.parameters(),
args.optim.lr,
momentum=args.optim.momentum,
weight_decay=args.optim.weight_decay)
start_epoch = 0
start_iter = 0
for i in range(args.optim.epochs, -1, -1):
if os.path.exists(ckpt_fname.format(i)):
print('loading file {}'.format(ckpt_fname.format(i)))
checkpoint = torch.load(ckpt_fname.format(i))
start_epoch = checkpoint['epoch']
start_iter = checkpoint['iteration']
if 'module.predictable_region' in checkpoint['state_dict']:
del checkpoint['state_dict']['module.predictable_region']
if 'module.position_feat' in checkpoint['state_dict']:
del checkpoint['state_dict']['module.position_feat']
paramnames = list(checkpoint['state_dict'].keys())
for k in paramnames:
if 'decoders.' in k:
checkpoint['state_dict'][k.replace(
'decoders.0.', '')] = checkpoint['state_dict'][k]
del checkpoint['state_dict'][k]
paramnames = list(checkpoint['state_dict'].keys())
for k in paramnames:
if 'outc.0' in k:
checkpoint['state_dict'][k.replace(
'outc.0', 'outc')] = checkpoint['state_dict'][k]
del checkpoint['state_dict'][k]
msg = model.load_state_dict(checkpoint['state_dict'], strict=False)
print(msg)
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint, starting at Epoch {}".format(
start_epoch))
loaded = True
break
if i == 0:
print("=> no checkpoint found")
if args.environment.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(
train_dataset)
else:
raise NotImplementedError("Only DistributedDataParallel is supported.")
# Train model
for epoch in range(start_epoch, args.optim.epochs):
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.optim.batch_size,
shuffle=(train_sampler is None),
num_workers=args.environment.workers,
pin_memory=True,
sampler=train_sampler,
worker_init_fn=data_utils.worker_init_fn)
adjust_learning_rate(optimizer, epoch, args.optim)
# train for one epoch
train_seq(train_loader, model, criterion, cls_criterion, optimizer,
epoch, start_iter, args, writer)
if args.environment.gpu == 0:
save_checkpoint(
{
'epoch': epoch + 1,
'iteration': 0,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict()
}, ckpt_fname.format(epoch))
start_iter = 0
def train_seq(train_loader,
model,
criterion,
cls_criterion,
optimizer,
epoch,
start_iter,
args,
writer=None):
out_nhoods = [args.data.out_nhood]
out_scales = [list(np.array(args.data.output_gridsize))]
out_scales = ['X'.join([str(d) for d in out_scales[0]])]
tbsuffixes = ['_{}_{}'.format(out_nhoods[0], out_scales[0])]
batch_time = AverageMeter('Time', ':04.2f', tbnames=['train/time'])
data_time = AverageMeter('Data', ':04.2f', tbnames=['train/datatime'])
losses = AverageMeter('Loss', '', tbnames=['train/loss' + tbsuffixes[0]])
clslosses = AverageMeter('ClsLoss',
':04.2f',
tbnames=['train/clsloss' + tbsuffixes[0]])
top1 = AverageMeter('Acc@1',
':04.2f',
tbnames=['train/acc' + tbsuffixes[0]])
ious = AverageMeter('IOU', ':04.2f', tbnames=['train/iou' + tbsuffixes[0]])
aps = AverageMeter('AP', ':04.2f', tbnames=['train/ap' + tbsuffixes[0]])
edge_aps = AverageMeter('E-AP',
':04.2f',
tbnames=['train/edgeap' + tbsuffixes[0]])
progress = ProgressMeter(
len(train_loader) + start_iter,
[batch_time, data_time, losses, clslosses, top1, ious, aps, edge_aps],
prefix="Epoch: [{}]".format(epoch),
tbwriter=writer)
compute_edge_ap = models.utils.EdgeAP()
compute_edge_ap = compute_edge_ap.cuda(args.environment.gpu)
ckpt_fname = os.path.join(args.logging.ckpt_dir, args.logging.name,
'checkpoint_{:04d}.pth')
model.train()
end = time.time()
for batchi, (data, target, meta) in enumerate(train_loader):
i = batchi + start_iter
audio, rgb, relpath, target, meta = data_utils.prepare_batch(
data, target, meta)
# measure data loading time
data_time.update(time.time() - end)
# compute output
(output, cls_output,
finalpad) = model(rgb=rgb,
audio=audio,
relpath=relpath,
padding=meta['sequence_padding'][0].item())
loss = criterion(output, target, meta)
cls_loss = cls_criterion(cls_output, meta['semantic_target'], meta)
# Compute all the metrics and baselines
losses.update(loss.item(), audio.size(0))
clslosses.update(cls_loss.item(), audio.size(0))
if (batchi + 1) % args.logging.train_eval_freq == 0:
with torch.no_grad():
prob = F.softmax(output, 1)
acc1 = data_utils.accuracy(output.permute(0, 2, 3,
1).contiguous().view(
-1, 2),
target.view(-1),
topk=(1, ))[0][0].item()
pred = (output[:, 0] < output[:, 1]
).long().detach() * meta['predictable_target']
pred_scores = prob[:, 1].detach()
pred_scores[meta['predictable_target'] ==
0] = pred_scores.min()
iou = data_utils.IOU(pred, target).item()
ap = data_utils.AP(pred_scores.cpu(), target.cpu())
edge_ap = compute_edge_ap(pred_scores, target,
meta['predictable_target'])
# Update progress meter
top1.update(acc1, audio.size(0))
ious.update(iou, audio.size(0))
aps.update(ap, audio.size(0))
edge_aps.update(edge_ap, audio.size(0))
progress.tbwrite(epoch * len(train_loader.dataset) //
args.optim.batch_size + i)
# Compute gradient and do SGD step
scaled_loss = (loss + cls_loss) / float(args.optim.n_batches_update)
scaled_loss.backward()
if args.optim.max_grad_norm > 0:
nn.utils.clip_grad_norm_(model.parameters(),
args.optim.max_grad_norm)
if (batchi + 1) % args.optim.n_batches_update == 0:
optimizer.step()
optimizer.zero_grad()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.logging.print_freq == 0:
progress.display(i)
optimizer.zero_grad()
def evaluate_path(args, all_val_datasets, ckpt_path, writer=None):
res_fname = ckpt_path.replace(
'.pth', '') + '{:04d}steps_res' + args.logging.suffix + '.pth'
start_epoch = 0
start_iter = 0
loaded = False
if not os.path.exists(ckpt_path):
return
for val_nsteps, val_dataset in all_val_datasets.items():
print('Evaluation validation with {} steps'.format(val_nsteps))
args.model.n_steps = val_nsteps
args.model.output_padding = val_dataset.padding
args.model.step_size = int(val_dataset.step_size)
model = models.avmap.SequenceOccupancySemanticsPredictor(args.model)
criterion = models.losses.SimpleWeightedCrossEntropy(args).cuda(
args.environment.gpu)
cls_criterion = models.losses.NonZeroWeightedCrossEntropy(args).cuda(
args.environment.gpu)
model = torch.nn.DataParallel(model).cuda(args.environment.gpu)
val_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=args.optim.val_batch_size,
shuffle=False,
num_workers=args.environment.workers,
pin_memory=True,
sampler=None)
if os.path.exists(res_fname.format(val_nsteps)):
print('Result exists...')
continue
checkpoint = torch.load(ckpt_path, map_location='cuda:0')
start_epoch = checkpoint['epoch']
del checkpoint['state_dict']['module.predictable_region']
del checkpoint['state_dict']['module.position_feat']
paramnames = list(checkpoint['state_dict'].keys())
for k in paramnames:
if 'decoders.' in k:
checkpoint['state_dict'][k.replace(
'decoders.0.', '')] = checkpoint['state_dict'][k]
del checkpoint['state_dict'][k]
paramnames = list(checkpoint['state_dict'].keys())
for k in paramnames:
if 'outc.0' in k:
checkpoint['state_dict'][k.replace(
'outc.0', 'outc')] = checkpoint['state_dict'][k]
del checkpoint['state_dict'][k]
msg = model.load_state_dict(checkpoint['state_dict'], strict=False)
print(msg)
print("=> loaded checkpoint, starting at Epoch {}".format(start_epoch))
result_dict, progress = err_validate_seq(val_loader, model, criterion,
cls_criterion, start_epoch,
args, writer)
scalars = progress.tb_scalar_dict()
torch.save((result_dict, scalars), res_fname.format(val_nsteps))
@torch.no_grad()
def err_validate_seq(val_loader,
model,
criterion,
cls_criterion,
epoch,
args,
writer=None):
val_nsteps = val_loader.dataset._n_steps
print('Validating {} steps'.format(val_nsteps))
out_nhoods = [args.data.out_nhood]
out_scales = [list(np.array(args.data.output_gridsize))]
out_scales = ['X'.join([str(d) for d in out_scales[0]])]
tbsuffixes = [
'_evalsteps{}_{}_{}'.format(val_nsteps, out_nhoods[0], out_scales[0])
]
batch_time = AverageMeter('Time', ':04.2f', tbnames=['val/time'])
top1 = AverageMeter('Acc@1', '', tbnames=['val/acc' + tbsuffixes[0]])
ious = AverageMeter('IOU', '', tbnames=['val/iou' + tbsuffixes[0]])
cls_maps = AverageMeter('ClassMAP',
'',
tbnames=['val/cls_map' + tbsuffixes[0]])
aps = AverageMeter('AP', '', tbnames=['val/ap' + tbsuffixes[0]])
edge_aps = AverageMeter('E-AP', '', tbnames=['val/edgeap' + tbsuffixes[0]])
progress = ProgressMeter(len(val_loader),
[batch_time, top1, ious, aps, edge_aps, cls_maps],
prefix='Test: ',
tbwriter=writer)
epochmetrics = Evaluator()
# switch to evaluate mode
model.eval()
end = time.time()
for i, (data, target, meta) in enumerate(val_loader):
audio, rgb, relpath, target, meta = data_utils.prepare_batch(
data, target, meta)
# compute output
finalpad = torch.FloatTensor([0])
(output, cls_output,
feat) = model(rgb=rgb,
audio=audio,
relpath=relpath,
padding=meta['sequence_padding'][0].item())
print(rgb[0, 0, :, :])
print(output[0, :, :, :].nonzero())
if target.shape[2] < output.shape[2]:
padding = (output.shape[2] - target.shape[2]) // 2
target = F.pad(target, [padding] * 4)
if 'predictable_target' in meta:
meta['predictable_target'] = F.pad(meta['predictable_target'],
[padding] * 4)
if 'semantic_target' in meta:
meta['semantic_target'] = F.pad(meta['semantic_target'],
[padding] * 4)
elif output.shape[2] < target.shape[2]:
padding = (target.shape[2] - output.shape[2]) // 2
output = F.pad(output, [padding] * 4)
cls_output = F.pad(cls_output, [padding] * 4)
prob = F.softmax(output, 1)
epochmetrics.append(output=output,
cls_output=cls_output,
target=target,
semantic_target=meta['semantic_target'],
predictable_target=meta['predictable_target'],
prob=prob)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % 100 == 0:
progress.display(i)
epochmetrics.collect()
(val_accs, val_aps, val_edge_aps,
val_cls_map) = epochmetrics.get_all_metrics(
balance=args.environment.evaluate_balanced)
top1.update(np.nanmean(val_accs), 1)
aps.update(np.nanmean(val_aps), 1)
edge_aps.update(np.nanmean(val_edge_aps), 1)
cls_maps.update(val_cls_map, 1)
progress.display(len(val_loader))
result_dict = {
'accs': val_accs,
'aps': val_aps,
'edge_aps': val_edge_aps,
'cls_map': val_cls_map
}
progress.tbwrite(int(epoch * 100000))
scalars = progress.tb_scalar_dict()
print(json.dumps(scalars, sort_keys=True, indent=2))
return result_dict, progress
class Evaluator:
def __init__(self):
self.stored_data = defaultdict(list)
def append(self, **kwargs):
for k, v in kwargs.items():
if v.is_cuda:
v = v.cpu()
self.stored_data[k].append(v)
def collect(self):
for k in self.stored_data.keys():
self.stored_data[k] = torch.cat(self.stored_data[k], 0)
def get_all_metrics(self, balance=False):
compute_edge_ap = models.utils.EdgeAP()
output = self.stored_data['output']
target = self.stored_data['target']
prob = self.stored_data['prob']
predictable_target = self.stored_data['predictable_target']
pred = (output[:, 0] < output[:, 1]).long().detach()
pred_scores = prob[:, 1].detach()
pred_scores[predictable_target == 0] = pred_scores.min()
print('Computing total metrics...')
predictable_loc = (predictable_target > 0)
clsacc1 = 0.0
cls_output = self.stored_data['cls_output']
cls_target = self.stored_data['semantic_target']
cls_predictable_loc = (target > 0) * (cls_target > 0)
num_elements = output.size(0)
accs = []
aps = []
edge_aps = []
clswise_aps = [0.0] * 13
cls_prob = F.softmax(cls_output, 1)
cls_pred = cls_prob.argmax(1)
# Compute CLS AP
interior_bool = (pred != 0)
cls_prob = cls_prob * (
interior_bool.unsqueeze(1).expand_as(cls_prob).float())
clswise_aps = np.zeros((cls_prob.shape[0], 13))
for i in range(len(cls_prob)):
for c_i in range(1, 14):
cls_pred_scores = cls_prob[i, c_i - 1]
cls_pred_scores = cls_pred_scores.contiguous().view(-1)
cls_i_gt = (cls_target[i] == c_i).view(-1).long()
try:
cls_i_ap = data_utils.AP(
cls_pred_scores[cls_predictable_loc[i].view(-1)],
cls_i_gt[cls_predictable_loc[i].view(-1)],
balance=False)
clswise_aps[i, c_i - 1] = cls_i_ap
except Exception as e:
clswise_aps[i, c_i - 1] = np.nan
clswise_aps = np.nanmean(clswise_aps, axis=0)
cls_map = np.nanmean(clswise_aps)
print('Evaluating {} elements... '.format(num_elements))
for i in range(num_elements):
# Compute acc
acc1 = data_utils.accuracy(
output.permute(0, 2, 3, 1)[i].contiguous().view(
-1, 2)[predictable_loc[i].view(-1)],
target[i].view(-1)[predictable_loc[i].view(-1)],
topk=(1, ),
balance=balance)[0][0].item()
accs.append(acc1)
# Compute AP
ap = data_utils.AP(pred_scores[i][predictable_target[i] > 0],
target[i][predictable_target[i] > 0],
balance=balance)
aps.append(ap)
# Compute Edge AP
edge_ap = compute_edge_ap(pred_scores[i:i + 1],
target[i:i + 1],
predictable_target[i:i + 1],
balance=balance)
edge_aps.append(edge_ap)
return (accs, aps, edge_aps, cls_map)
@hydra.main(config_path='./configs/avmap/config.yaml')
def main(args):
update_pythonpath_relative_hydra()
ckpt_fname = os.path.join(args.logging.ckpt_dir, args.logging.name,
'checkpoint_{:04d}.pth')
if os.path.exists(ckpt_fname.format(args.optim.epochs - 1)) and (
args.environment.evaluate_path != ''):
print('{} training has finished'.format(args.logging.name))
executor = submitit.AutoExecutor(
folder=os.path.join(
args.environment.project_dir, 'audioperception_data',
'submitit_train_logs',
'{}'.format(args.logging.name + args.logging.suffix)),
max_num_timeout=100,
cluster="debug",
)
executor.update_parameters(name=args.logging.name + args.logging.suffix)
# Convert all paths to absolute
args.logging.ckpt_dir = hydra_utils.to_absolute_path(args.logging.ckpt_dir)
args.logging.tb_dir = hydra_utils.to_absolute_path(args.logging.tb_dir)
args.data.train_env_list_file = hydra_utils.to_absolute_path(
args.data.train_env_list_file)
args.data.val_env_list_file = hydra_utils.to_absolute_path(
args.data.val_env_list_file)
args.data.full_eval_path = hydra_utils.to_absolute_path(
args.data.full_eval_path)
job = executor.submit(
Worker(train_func=train_seq, val_func=err_validate_seq), args)
job.result()
if __name__ == '__main__':
main()