forked from Jiangfeng-Xiong/satellite_seg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsubmit.py
executable file
·82 lines (68 loc) · 2.73 KB
/
submit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import numpy as np
import skimage
import skimage.io as io
import pandas as pd
from tqdm import tqdm
from utils.preprocess import encode_segmap,segmap
import sys,os
columns=["ret"]
def load_predicted_label(ID,label_path):
labels = io.imread(label_path)
num_rows = labels.shape[0] * labels.shape[1]
test_preds = np.zeros((num_rows),np.uint8)
for i in range(labels.shape[1]):
for j in range(labels.shape[0]):
test_preds[i*labels.shape[0]+j] = labels[j][i]
ids = [ID for i in range(num_rows)]
return ids,test_preds
def replace_zeros(predmap,replace_val):
predmap[predmap==0] = replace_val
def generate_csv(result_path_dir,use_crf=False):
#encode
for i in tqdm(range(3)):
prefix = i + 1
if(use_crf):
image_path = os.path.join(result_path_dir,"vis_test_%d_post.png"%(prefix))
save_path = os.path.join(result_path_dir,"test_%s_pred_post.png"%(prefix))
else:
image_path = os.path.join(result_path_dir,"vis_test_%d_pred.png"%(prefix))
save_path = os.path.join(result_path_dir,"test_%s_pred.png"%(prefix))
img = io.imread(image_path)
encode_mask = encode_segmap(img)
if(use_crf==False):
encode_mask[encode_mask==0] = 1 #replace with plant
color_mask = segmap(encode_mask)
io.imsave(os.path.join(result_path_dir,"test_%s_pred_replace.png"%(prefix)),color_mask)
io.imsave(save_path,encode_mask)
idx,pred = load_predicted_label(prefix,save_path)
submission = pd.DataFrame(pred,columns=columns)
submission.insert(0,'ID',idx)
submission.to_csv(os.path.join(result_path_dir,'%d.csv'%(prefix)),index=False)
def generate_csv_stage2(result_path_dir,use_crf=False,use_replace=False):
for i in tqdm(range(3)):
prefix = i + 1
if(use_crf):
image_path = os.path.join(result_path_dir,"vis_test_%d_post.png"%(prefix))
save_path = os.path.join(result_path_dir,"test_%s_pred_post.png"%(prefix))
else:
image_path = os.path.join(result_path_dir,"vis_test_%d_pred.png"%(prefix))
save_path = os.path.join(result_path_dir,"test_%s_pred.png"%(prefix))
img = io.imread(image_path)
encode_mask = encode_segmap(img)
if(use_crf==False and use_replace==True):
encode_mask[encode_mask==0] = 1 #replace with plant
color_mask = segmap(encode_mask)
io.imsave(os.path.join(result_path_dir,"test_%s_pred_replace.png"%(prefix)),color_mask)
io.imsave(save_path,encode_mask)
idx,pred = load_predicted_label(prefix,save_path)
submission = pd.DataFrame(np.reshape(pred,(1,-1)))
submission.to_csv(os.path.join(result_path_dir,'%d.csv'%(prefix)),index=False,header=False)
if __name__=='__main__':
if(len(sys.argv)<2):
result_dir = '.'
use_crf = False
else:
result_dir = sys.argv[1]
use_crf = int(sys.argv[2])
#generate zipfile and remove csv file
generate_csv_stage2(result_dir,use_crf=use_crf,use_replace=False)