-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
48 lines (40 loc) · 1.21 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import os
from train import Model
from config import hparams
from argparse import ArgumentParser
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning import Trainer
parser = ArgumentParser('train args')
#parser.add_argument('--gpu', default='0')
parser.add_argument('--epochs', default=50, type=int)
args = parser.parse_args()
#os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
model = Model(hparams)
checkpoint_callback = ModelCheckpoint(
filepath=f'lightning_logs/{hparams["name"]}/{hparams["version"]}/' + '{epoch}-{auroc:.2f}',
save_top_k=3,
verbose=True,
monitor='auroc',
mode='max',
save_last=True
)
early_stop = EarlyStopping(
monitor='auroc',
min_delta=0.01,
patience=5,
strict=False,
verbose=True,
mode='max'
)
logger = TensorBoardLogger(
save_dir='lightning_logs',
name=hparams['name'],
version=hparams["version"]
)
trainer = Trainer(max_epochs=args.epochs,#gpus=1,
early_stop_callback=early_stop,
weights_summary='full',
checkpoint_callback=checkpoint_callback,
logger=logger)
trainer.fit(model)