-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtapas-finetune.py
210 lines (180 loc) · 8.31 KB
/
tapas-finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import os
import logging
import argparse
import pathlib
from functools import partial
import torch
import torch.utils.data
from tqdm import tqdm
from transformers import TapasConfig, TapasForQuestionAnswering, TapasTokenizer
from torch.utils.tensorboard import SummaryWriter
from utils.metrics import SqaMetric
from utils.util import make_config, init_logging
from dataloader import TableDataset, collate_fn
lg = logging.getLogger()
slg = logging.getLogger("sum")
def train(model, train_dataloader, valid_dataloader, test_dataloader, tokenizer, args):
assert args.checkpoint_dir.exists()
device = torch.device("cuda")
optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5)
tb = SummaryWriter(log_dir=args.tensorboard_dir)
model.to(device)
model.train()
total_step = 0
best_valid_ans_acc = 0.
best_valid_ans_acc_epoch = -1
model_name = '?'
for epoch in range(args.epochs): # loop over the dataset multiple times
slg.info(f"Epoch: {epoch}")
data_iter = tqdm(enumerate(train_dataloader), total=len(train_dataloader), disable=True)
for idx, batch in data_iter:
# get the inputs;
input_ids = batch["input_ids"].to(device)
attention_mask = batch["attention_mask"].to(device)
token_type_ids = batch["token_type_ids"].to(device)
labels = batch["labels"].to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = model(input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
labels=labels)
loss = outputs.loss
tb.add_scalar('train/loss', loss.item(), total_step)
lg.info(f"[TRAIN] epoch: {epoch}, step: {idx} / {len(train_dataloader)}, loss: {loss.item()}")
loss.backward()
optimizer.step()
total_step += 1
# evaluate each epoch
valid_loss, valid_seq_acc, valid_ans_acc = evaluate(model, valid_dataloader, tokenizer, args.valid_tsv, args)
slg.info(f"[VALID] epoch: {epoch}, step: {total_step}, loss: {valid_loss}, seq_acc: {valid_seq_acc}, ans_acc: {valid_ans_acc}")
tb.add_scalar('valid/loss', valid_loss, total_step)
tb.add_scalar('valid/ans_acc', valid_ans_acc, total_step)
if valid_ans_acc > best_valid_ans_acc:
best_valid_ans_acc = valid_ans_acc
best_valid_ans_acc_epoch = epoch
# test
test_loss, test_seq_acc, test_ans_acc = evaluate(model, test_dataloader, tokenizer, args.test_tsv, args)
slg.info(f"[TEST] epoch: {epoch}, step: {total_step}, loss: {test_loss}, seq_acc: {test_seq_acc}, ans_acc: {test_ans_acc}")
tb.add_scalar('test/loss', test_loss, total_step)
tb.add_scalar('test/ans_acc', test_ans_acc, total_step)
# save
model_name = f"{epoch}_{total_step}_{valid_ans_acc:.4f}_{test_ans_acc:.4f}"
save_path = args.checkpoint_dir / f"{model_name}.pth"
torch.save(model.state_dict(), save_path)
slg.info(f"[SAVE] {save_path}")
slg.info(f"[SUM] epoch: {epoch}, step: {total_step}, best_valid_ans_acc({best_valid_ans_acc_epoch}): {best_valid_ans_acc}")
# TODO collect best result
slg.info(f"[BEST] {model_name}")
def evaluate(model, test_dataloader, tokenizer, tsv_path, args):
lg.info(f"Start evaluating {tsv_path} ...")
model.eval()
device = torch.device("cuda")
sqa_metric = SqaMetric(tsv_path)
total_loss = 0.
with torch.no_grad():
for bid, batch in enumerate(test_dataloader):
input_ids = batch["input_ids"].to(device)
attention_mask = batch["attention_mask"].to(device)
token_type_ids = batch["token_type_ids"].to(device)
labels = batch["labels"].to(device)
metadatas = batch["metadata"]
origin_encodings = batch["origin_encoding"]
outputs = model(input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
labels=labels)
total_loss += outputs.loss.item()
for metadata, origin_encoding, logit in zip(metadatas, origin_encodings, outputs.logits):
logit = logit.unsqueeze(0).cpu().detach()
predicted_answer_coordinates, = tokenizer.convert_logits_to_predictions(origin_encoding, logit)
assert len(predicted_answer_coordinates) == 1
ans_cord = predicted_answer_coordinates[0]
ans_cord = set(ans_cord)
sqa_metric.add_pred(metadata, ans_cord)
seq_acc, ans_acc = sqa_metric.get_acc()
model.train()
return total_loss / len(test_dataloader), seq_acc, ans_acc
def get_parser():
parser = argparse.ArgumentParser()
parser.add_argument("--csv_dir", type=str, default="data/SQA/table_csv")
parser.add_argument("--train_tsv", type=str, default="data/SQA/random-split-1-train.tsv")
parser.add_argument("--valid_tsv", type=str, default="data/SQA/random-split-1-dev.tsv")
parser.add_argument("--test_tsv", type=str, default="data/SQA/test.tsv")
parser.add_argument("--output_dir", type=str, default="output/0508/0_demo")
parser.add_argument("--shuffle", action="store_true", help="shuffle training data")
parser.add_argument("--epochs", type=int, default=10)
parser.add_argument("--batch_size", type=int, default=128)
parser.add_argument("--seed", type=int, default=1107)
parser.add_argument("--model_name", type=str, default="google/tapas-small")
parser.add_argument("--pretrain_model", type=str, help="pretrain model containing tapas table encoder")
parser.add_argument("--debug", action="store_true")
return parser
def get_dataloader(args, tokenizer):
train_dataset = TableDataset(
csv_dir=args.csv_dir,
tsv_path=args.train_tsv,
tokenizer=tokenizer
)
valid_dataset = TableDataset(
csv_dir=args.csv_dir,
tsv_path=args.valid_tsv,
tokenizer=tokenizer,
is_eval=True
)
test_dataset = TableDataset(
csv_dir=args.csv_dir,
tsv_path=args.test_tsv,
tokenizer=tokenizer,
is_eval=True
)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.batch_size,
shuffle=args.shuffle,
collate_fn=partial(collate_fn, is_eval=False)
)
valid_dataloader = torch.utils.data.DataLoader(
valid_dataset,
batch_size=args.batch_size,
shuffle=False,
collate_fn=partial(collate_fn, is_eval=True)
)
test_dataloader = torch.utils.data.DataLoader(
test_dataset,
batch_size=args.batch_size,
shuffle=False,
collate_fn=partial(collate_fn, is_eval=True)
)
return train_dataloader, valid_dataloader, test_dataloader
def init_model_from_pretrain(model, pretrain_model):
pretrained_dict = torch.load(pretrain_model)
# for param_name, param in pretrained_dict.items():
# print(param_name, '\t', param.shape)
model_dict = model.state_dict()
for param_name, param in model_dict.items():
# print(param_name, '\t', param.shape)
if param_name.startswith('tapas'):
pretrained_name = param_name.replace('tapas.', 'table_encoder.', 1)
lg.debug(f"{param_name} is copied from {pretrained_name}")
model_dict[param_name] = pretrained_dict[pretrained_name]
model.load_state_dict(model_dict)
del pretrained_dict
def main():
parser = get_parser()
args = parser.parse_args()
make_config(args)
init_logging(args.log_path, debug=args.debug, sum_log_path=args.eval_log_path)
slg.info("=" * 50)
slg.info(args)
tokenizer = TapasTokenizer.from_pretrained(args.model_name)
model = TapasForQuestionAnswering.from_pretrained(args.model_name)
# load pretrained parameters
if args.pretrain_model:
init_model_from_pretrain(model, args.pretrain_model)
slg.info(f"{args.pretrain_model} is loaded into tapas")
train_dataloader, valid_dataloader, test_dataloader = get_dataloader(args, tokenizer)
train(model, train_dataloader, valid_dataloader, test_dataloader, tokenizer, args) # train
if __name__ == "__main__":
main()